98%
921
2 minutes
20
Crop yield is at increasing risk due to water scarcity and climate change. Agrochemicals can activate hormone receptors to regulate transpiration and modulate transcription and address water deficits. Structure-guided optimization of multiple abscisic acid (ABA) receptor-agonist interactions is necessary to activate the entire PYRABACTIN RESISTANCE 1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) receptor family. The new agonist iCB, produced through scaffold-merging led by X-ray structure, activates subfamilies II and III at low-nM concentrations and subfamily I receptors at higher-nM concentrations. Structural analysis of opabactin and iCB ternary complexes reveals selectivity-determining residues, making the PYL1/PYL4/PYL8 subfamilies sensitive to specific agonists and highlighting the differential sensitivity of receptor subfamilies to agonists across plant species. iCB may activate most eudicots' PYL8-like receptors, in contrast to opabactin, due to limited steric constraints. This enables iCB to activate PYL8-like receptors with a bulkier Leu residue in the 3' tunnel, such as AtPYL8, SlPYL8, and VviPYL8. In contrast, opabactin activation is limited to receptors with Val at this position, for example, TaPYL8. Therefore, iCB extends its action to more ABA receptors than CB, iSB09, and opabactin, exhibits higher affinity than ABA for dimeric receptors, and can protect tomato plants against drought. In addition to regulating stomatal conductance and lowering water consumption, iCB protects photosystem II and improves photosynthesis following prolonged water deficit. Moreover, iCB induces an ABA-like transcriptional response, upregulates the osmolyte synthesis, and can be hyperpotentiated when combined with the expression of a customized receptor. Our results provide structural insights for optimizing agonist design and aiding plants in managing water deficits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molp.2025.07.014 | DOI Listing |
JMIR Hum Factors
September 2025
Seidenberg School of Computer Science and Information Systems, Pace University, New York City, NY, United States.
Background: As information and communication technologies and artificial intelligence (AI) become deeply integrated into daily life, the focus on users' digital well-being has grown across academic and industrial fields. However, fragmented perspectives and approaches to digital well-being in AI-powered systems hinder a holistic understanding, leaving researchers and practitioners struggling to design truly human-centered AI systems.
Objective: This paper aims to address the fragmentation by synthesizing diverse perspectives and approaches to digital well-being through a systematic literature review.
J Med Internet Res
September 2025
School of Nursing, University of Minho, Braga, Portugal.
Background: The spread of misinformation on social media poses significant risks to public health and individual decision-making. Despite growing recognition of these threats, instruments that assess resilience to misinformation on social media, particularly among families who are central to making decisions on behalf of children, remain scarce.
Objective: This study aimed to develop and evaluate the psychometric properties of a novel instrument that measures resilience to misinformation in the context of social media among parents of school-age children.
J Phys Chem Lett
September 2025
Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States.
Carbon dots (CDs) represent a new class of nontoxic and sustainable nanomaterials with increasing applications. Among them, bright and large Stokes-shift CDs are highly desirable for display and imaging, yet the emission mechanisms remain unclear. We obtained structural signatures for the recently engineered green and red CDs by ground-state femtosecond stimulated Raman spectroscopy (FSRS), then synthesized orange CDs with similar size but much higher nitrogen dopants than red CDs.
View Article and Find Full Text PDFCereb Cortex
August 2025
Section on Functional Imaging Methods & Functional MRI Core Facility, National Institute of Mental Health, 10 Center Drive, Rm 1D80, Bethesda, MD 20892, United States.
Statistical Parametric Mapping (SPM) has been profoundly influential to neuroimaging as it has fostered rigorous, statistically grounded structure for model-based inferences that have led to mechanistic insights about the human brain over the past 30 years. The statistical constructs shared with the world through SPM have been instrumental for deriving meaning from neuroimaging data; however, they require simplifying assumptions which can provide results that, while statistically sound, may not accurately reflect the mechanisms of brain function. A platform that fosters the exploration of the rich and varying neuronal and physiologic underpinnings of the measured signals and their associations to behavior and physiologic measures needs a different set of tools.
View Article and Find Full Text PDFMol Divers
September 2025
Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492001, India.
Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.
View Article and Find Full Text PDF