Basal ABA signaling balances transpiration and photosynthesis.

Physiol Plant

Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain.

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The balance between the CO entry for photosynthesis and transpiration water loss is crucial for plant growth, and ABA signaling can affect this equilibrium. To test how ABA balances plant growth and environmental adaptation, we performed molecular genetics studies in the biotech crop Nicotiana benthamiana under well-watered or drought conditions. Studies on ABA signaling in crops are complicated by the multigenic nature of the PYR/PYL/RCAR ABA receptor family and its functional redundancy, which is particularly challenging in polyploid plants. We have generated a pentuple pyl mutant in the allotetraploid Nicotiana benthamiana through CRISPR/Cas9 gene editing. The pentuple mutant is impaired in 2 NbPYL1-like and 3 NbPYL8-like receptors, affecting the regulation of transpiration and several ABA-dependent transcriptional processes. RNA-seq and metabolite analysis revealed that the synthesis of galactinol, an essential precursor for the osmoprotective raffinose family of oligosaccharides, is ABA-dependent and impaired in the mutant under osmotic stress. In contrast, our results show that, under well-watered conditions, partial inactivation of ABA signaling leads to higher CO entry and photosynthesis in the mutant than in WT. Photosynthesis analyses revealed an increased CO diffusion capacity mediated by higher stomatal and mesophyll conductances, and higher substomatal CO concentration in the pentuple mutant. RNA-seq analyses revealed that genes associated with cell wall loosening (e.g., expansins) and porosity were strongly downregulated by ABA in WT. In summary, a partial relief of the ABA control on transpiration mediated by ABA receptors positively affects photosynthesis when water is not limited, at the expense of reduced water use efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.14494DOI Listing

Publication Analysis

Top Keywords

aba signaling
16
entry photosynthesis
8
plant growth
8
aba
8
nicotiana benthamiana
8
pentuple mutant
8
analyses revealed
8
photosynthesis
5
mutant
5
basal aba
4

Similar Publications

Identification of RAV transcription factors (B3-domain-containing) and functional analysis of OsRAV2 in rice blast and drought stress.

J Plant Physiol

September 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China. Electronic address:

RAV transcription factors play roles in a variety of diverse biological processes. However, their role in rice's response to drought and blast stress remains largely unexplored. In this study, we performed a genome-wide characterization and identification of rice RAV transcription factor family genes.

View Article and Find Full Text PDF

GA participates in FR light-induced internode elongation of cucumber by regulating the expression of genes/proteins related to aquaporins, expansins, cell wall biosynthesis, hormone metabolism, and signal transduction. This study investigated the effects of the interaction between far-red (FR) light and gibberellin (GA) on the internode elongation of cucumber (Cucumis sativus L. 'Zhongnong No.

View Article and Find Full Text PDF

Objective: Converging evidence from neuroimaging studies and genome-wide association study (GWAS) suggests the involvement of prefrontal cortex (PFC) and striatum dysfunction in the pathophysiology of anorexia nervosa (AN). However, identifying the causal role of circuit-specific genes in the development of the AN-like phenotype remains challenging and requires the combination of novel molecular tools and preclinical models.

Methods: We used the activity-based anorexia (ABA) rat model in combination with a novel viral-based translating ribosome affinity purification (TRAP) technique to identify transcriptional differences within a specific neural pathway that we have previously demonstrated to mediate pathological weight loss in ABA rats (i.

View Article and Find Full Text PDF

Phytochrome B stabilizes the KNOX transcription factor BP/KNAT1 to promote light-initiated seed germination in Arabidopsis thaliana.

Plant Commun

September 2025

Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; College of Life Sciences, University of Chinese Academy of Sciences

Seed germination is a critical step in the life cycle of plants. The far-red/red light photoreceptor phytochrome B (phyB) plays a dominant role in promoting seed germination, mainly by modulating the metabolism of gibberellin (GA) and abscisic acid (ABA), although the underlying mechanism remains poorly understood. In this study, we identified BREVIPEDICELLUS (BP)/KNAT1, a KNOX transcription factor that acted downstream of phyB and activated light-initiated seed germination in Arabidopsis thaliana.

View Article and Find Full Text PDF

Excessive P effects in the growth of Solanum lycopersicum related to stomatal closing mediated by ABA and ethylene.

Plant Sci

September 2025

Instituto de Ciências Naturais (ICN), Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Centro, zip code 37130-001, Alfenas, MG, Brazil. Electronic address:

Phosphorus (P) is an essential macronutrient for plant growth and development; however, both its deficiency and excess can be harmful. Although the effects of excess P are still poorly understood, research has shown that plants exposed to excessive levels of P exhibit reductions in stomatal conductance, photosynthesis, and growth. The aim of this study was to investigate the effect of different P concentrations on stomatal responses, photochemical parameters, growth, and development of three Solanum lycopersicum genotypes: wild type, Never ripe (lower sensitivity to ethylene), and Notabilis (deficient in ABA production).

View Article and Find Full Text PDF