Abscisic acid (ABA) functions as a central regulator of dehydration responses in land plants. As such, ABA signaling was pivotal in facilitating the colonization of terrestrial habitats. The conserved ABA signal transduction module consists of 2C-type protein phosphatases (PP2Cs) and their ABA-triggered inhibitors, PYRABACTIN RESISTANCE 1-like proteins (PYLs).
View Article and Find Full Text PDFAbscisic acid (ABA) is best known for regulating the responses to abiotic stressors. Thus, applications of ABA signaling pathways are considered promising targets for securing yield under stress. ABA levels rise in response to abiotic stress, mounting physiological and metabolic responses that promote plant survival under unfavorable conditions.
View Article and Find Full Text PDFDeveloping sensory modules for specific molecules of interest represents a fundamental challenge in synthetic biology and its applications. A somewhat generalizable approach for this challenge is demonstrated here by evolving a naturally occurring chemically induced heterodimer into a genetically encoded sensor for herbicides. The interaction between PYRABACTIN-RESISTANT-like receptors and type-2C protein phosphatases is induced by abscisic acid─a small-molecule hormone in plants.
View Article and Find Full Text PDFThe yeast two-hybrid (Y2H) assay is widely used for protein-protein interaction characterization due to its simplicity and accessibility. However, it may mask changes in affinity caused by mutations or ligand activation due to signal saturation. To overcome this drawback, we modified the Y2H system to have tunable protein expression by introducing a fluorescent reporter and a pair of synthetic inducible transcription factors to regulate the expression of interacting components.
View Article and Find Full Text PDFTheor Appl Genet
August 2019
Wild emmer allele of GNI-A1 ease competition among developing grains through the suppression of floret fertility and increase grain weight in tetraploid wheat. Grain yield is a highly polygenic trait determined by the number of grains per unit area, as well as by grain weight. In wheat, grain number and grain weight are usually negatively correlated.
View Article and Find Full Text PDFAbscisic acid (ABA) receptors belong to the START domain superfamily, which encompasses ligand-binding proteins present in all kingdoms of life. START domain proteins contain a central binding pocket that, depending on the protein, can couple ligand binding to catalytic, transport or signaling functions. In Arabidopsis, the best characterized START domain proteins are the 14 PYR/PYL/RCAR ABA receptors, while the other members of the superfamily do not have assigned ligands.
View Article and Find Full Text PDF