Stomatal pores in land plants rapidly and reversibly open and close in response to diurnal changes in leaf carbon dioxide (CO2) concentration. Studies have suggested that CO2 is sensed by guard cells with relevant amplifying contributions from mesophyll tissue. CO2 concentration changes trigger rapid signal transduction events involving protein phosphorylation in guard cells.
View Article and Find Full Text PDFPlants integrate environmental stimuli to optimize photosynthesis vs water loss by controlling stomatal apertures. However, stomatal responses to temperature elevation and the underlying molecular genetic mechanisms remain less studied. We developed an approach for clamping leaf-to-air vapor pressure difference (VPD) to fixed values, and recorded robust reversible warming-induced stomatal opening in intact plants.
View Article and Find Full Text PDFBioinformatics
July 2024
Motivation: Genomic distance estimation is a critical workload since exact computation for whole-genome similarity metrics such as Average Nucleotide Identity (ANI) incurs prohibitive runtime overhead. Genome sketching is a fast and memory-efficient solution to estimate ANI similarity by distilling representative k-mers from the original sequences. In this work, we present HyperGen that improves accuracy, runtime performance, and memory efficiency for large-scale ANI estimation.
View Article and Find Full Text PDFThe continuing rise in the atmospheric carbon dioxide (CO) concentration causes stomatal closing, thus critically affecting transpirational water loss, photosynthesis, and plant growth. However, the primary CO sensor remains unknown. Here, we show that elevated CO triggers interaction of the MAP kinases MPK4/MPK12 with the HT1 protein kinase, thus inhibiting HT1 kinase activity.
View Article and Find Full Text PDFWe present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g.
View Article and Find Full Text PDFNat Rev Mol Cell Biol
July 2022
Plant hormones are signalling compounds that regulate crucial aspects of growth, development and environmental stress responses. Abiotic stresses, such as drought, salinity, heat, cold and flooding, have profound effects on plant growth and survival. Adaptation and tolerance to such stresses require sophisticated sensing, signalling and stress response mechanisms.
View Article and Find Full Text PDFPlant Physiol
December 2021
Recent advances are revealing mechanisms mediating CO-regulated stomatal movements in Arabidopsis, stomatal architecture and stomatal movements in grasses, and the long-term impact of CO on growth.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2021
Stomatal pores close rapidly in response to low-air-humidity-induced leaf-to-air vapor pressure difference (VPD) increases, thereby reducing excessive water loss. The hydroactive signal-transduction mechanisms mediating high VPD-induced stomatal closure remain largely unknown. The kinetics of stomatal high-VPD responses were investigated by using time-resolved gas-exchange analyses of higher-order mutants in guard-cell signal-transduction branches.
View Article and Find Full Text PDFSignaling networks are at the heart of almost all biological processes. Most of these networks contain large number of components, and often either the connections between these components are not known or the rate equations that govern the dynamics of soluble signaling components are not quantified. This uncertainty in network topology and parameters can make it challenging to formulate detailed mathematical models.
View Article and Find Full Text PDFThe plant hormone abscisic acid (ABA) plays a central role in the regulation of stomatal movements under water-deficit conditions. The identification of ABA receptors and the ABA signaling core consisting of PYR/PYL/RCAR ABA receptors, PP2C protein phosphatases and SnRK2 protein kinases has led to studies that have greatly advanced our knowledge of the molecular mechanisms mediating ABA-induced stomatal closure in the past decade. This review focuses on recent progress in illuminating the regulatory mechanisms of ABA signal transduction, and the physiological importance of basal ABA signaling in stomatal regulation by CO and, as hypothesized here, vapor-pressure deficit.
View Article and Find Full Text PDFSucrose-non-fermenting-1-related protein kinase-2s (SnRK2s) are critical for plant abiotic stress responses, including abscisic acid (ABA) signaling. Here, we develop a genetically encoded reporter for SnRK2 kinase activity. This sensor, named SNACS, shows an increase in the ratio of yellow to cyan fluorescence emission by OST1/SnRK2.
View Article and Find Full Text PDFAbiotic stresses, including drought and salinity, trigger a complex osmotic-stress and abscisic acid (ABA) signal transduction network. The core ABA signalling components are snf1-related protein kinase2s (SnRK2s), which are activated by ABA-triggered inhibition of type-2C protein-phosphatases (PP2Cs). SnRK2 kinases are also activated by a rapid, largely unknown, ABA-independent osmotic-stress signalling pathway.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2019
Sensing and responding to environmental water deficiency and osmotic stresses are essential for the growth, development, and survival of plants. Recently, an osmolality-sensing ion channel called OSCA1 was discovered that functions in sensing hyperosmolality in Here, we report the cryo-electron microscopy (cryo-EM) structure and function of an OSCA1 homolog from rice (; OsOSCA1.2), leading to a model of how it could mediate hyperosmolality sensing and transport pathway gating.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2018
Stomatal pore apertures are narrowing globally due to the continuing rise in atmospheric [CO]. CO elevation and the plant hormone abscisic acid (ABA) both induce rapid stomatal closure. However, the underlying signal transduction mechanisms for CO/ABA interaction remain unclear.
View Article and Find Full Text PDFGibberellins (GAs) control key growth and developmental processes in plants. Real-time monitoring of GA concentrations in living tissues is critical for understanding the actions of this hormone class. A first-generation optogenetic GA-nano-indicator now illuminates the effects of GA levels on cell length and light signalling.
View Article and Find Full Text PDFPestic Biochem Physiol
July 2016
Compared to other organophosphate-resistant and -susceptible (S) lines of Bactrocera dorsalis, the carboxylesterase (CBE) BdE5 in the naled-resistant (nal-r) line has been found to possess remarkable quantitative elevation. Our study attempts to identify the role of BdE5 in naled resistance, and we discovered several points of interest. Firstly, activity staining on native PAGE revealed that the percentage of flies with intensive BdE5 bands in the nal-r line was substantially higher than in the S line, indicating that the BdE5 band correlates with naled susceptibility.
View Article and Find Full Text PDFIt is challenging to establish one-lung ventilation in difficult airway patients. Surgical pneumothorax under spontaneous breathing to obtain well-collapsed lung is a feasible method for thoracic surgery. A 76-year-old man with right empyema was scheduled for decortication.
View Article and Find Full Text PDFThe exploration of plant behavior on a cellular scale in a minimal invasive manner is key to understanding plant adaptations to their environment. Plant hormones regulate multiple aspects of growth and development and mediate environmental responses to ensure a successful life cycle. To monitor the dynamics of plant hormone actions in intact tissue, we need qualitative and quantitative tools with high temporal and spatial resolution.
View Article and Find Full Text PDFThis study of the Arabidopsis (Arabidopsis thaliana) nitrate transporters NRT1.11 and NRT1.12 reveals how the interplay between xylem and phloem transport of nitrate ensures optimal nitrate distribution in leaves for plant growth.
View Article and Find Full Text PDFPlants need to acquire nitrogen (N) efficiently from the soil for growth. Nitrate is one of the major N sources for higher plants. Therefore, nitrate uptake and allocation are key factors in efficient N utilization.
View Article and Find Full Text PDFA Ce(3+):YAG double-clad crystal fiber (DCF) visible emission was used as the light source for optical coherence tomography (OCT). The visible emission was produced from a 10 microm core DCF pumped by a diode laser. The broadband emission and short central wavelength of this light source enabled the realization of 1.
View Article and Find Full Text PDFSeveral quantitative trait locus analyses have suggested that grain yield and nitrogen use efficiency are well correlated with nitrate storage capacity and efficient remobilization. This study of the Arabidopsis thaliana nitrate transporter NRT1.7 provides new insights into nitrate remobilization.
View Article and Find Full Text PDFLittle is known about the molecular and regulatory mechanisms of long-distance nitrate transport in higher plants. NRT1.5 is one of the 53 Arabidopsis thaliana nitrate transporter NRT1 (Peptide Transporter PTR) genes, of which two members, NRT1.
View Article and Find Full Text PDFIn higher plants, two types of nitrate transporters, NRT1 and NRT2, have been identified. In Arabidopsis, there are 53 NRT1 genes and 7 NRT2 genes. NRT2 are high-affinity nitrate transporters, while most members of the NRT1 family are low-affinity nitrate transporters.
View Article and Find Full Text PDF