Non-invasive micro-test technology (NMT) reveals dynamic ionic/molecular concentration gradients by measuring fluxes of ions and small molecules in liquid media in 1D, 2D or 3D fashions with sensitivity up to pico- (10) or femto- (10) moles per cm per second. NMT has been applied to study metabolism, signal transduction, genes and/or proteins physiological functions related to transmembrane ionic/molecular activities with live samples under normal conditions or stress. Data on ion and/or molecule homeostasis (IMH) by NMT in biomedical sciences, plant and crop sciences, environmental sciences, marine and space biology as well as traditional Chinese medicine are reviewed.
View Article and Find Full Text PDFAntioxidants (Basel)
September 2024
The amelioration of cadmium (Cd) toxicity in plants by ammonium (NH) has been widely investigated. However, the molecular mechanisms underpinning this amelioration have remained ambiguous. Here, we found that NH significantly reduces Cd accumulation and enhances antioxidant capacity by increasing ABA accumulation, which, in turn, improves Cd tolerance in rice seedlings.
View Article and Find Full Text PDFNa exclusion from above-ground tissues via the Na-selective transporter HKT1;5 is a major salt-tolerance mechanism in crops. Using the expression genome-wide association study and yeast-one-hybrid screening, we identified TaSPL6-D, a transcriptional suppressor of TaHKT1;5-D in bread wheat. SPL6 also targeted HKT1;5 in rice and Brachypodium.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2024
The precise control of free auxin (indole-3-acetic acid, IAA) gradient, which is orchestrated by biosynthesis, conjugation, degradation, hydrolyzation, and transport, is critical for all aspects of plant growth and development. Of these, the GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetase family, pivotal in conjugating IAA with amino acids, has garnered significant interest. Recent advances in understanding GH3-dependent IAA conjugation have positioned GH3 functional elucidation as a hot topic of research.
View Article and Find Full Text PDFInt J Mol Sci
May 2023
The indole-3-pyruvic acid (IPA) pathway is the main auxin biosynthesis pathway in the plant kingdom. Local control of auxin biosynthesis through this pathway regulates plant growth and development and the responses to biotic and abiotic stresses. During the past decades, genetic, physiological, biochemical, and molecular studies have greatly advanced our understanding of tryptophan-dependent auxin biosynthesis.
View Article and Find Full Text PDFThe auxin IAA (Indole-3-acetic acid) plays key roles in regulating plant growth and development, which depends on an intricate homeostasis that is determined by the balance between its biosynthesis, metabolism and transport. YUC flavin monooxygenases catalyze the rate-limiting step of auxin biosynthesis via IPyA (indole pyruvic acid) and are critical targets in regulating auxin homeostasis. Despite of numerous reports on the transcriptional regulation of YUC genes, little is known about those at the post-translational protein level.
View Article and Find Full Text PDF1,9-decanediol (1,9-D) is a biological nitrification inhibitor secreted in roots, which effectively inhibits soil nitrifier activity and reduces nitrogen loss from agricultural fields. However, the effects of 1,9-D on plant root growth and the involvement of signaling pathways in the plant response to 1,9-D have not been investigated. Here, we report that 1,9-D, in the 100-400 μM concentration range, promotes primary root length in Arabidopsis seedlings at 3d and 5d, by 10.
View Article and Find Full Text PDFFront Plant Sci
August 2022
Auxin is one of the most important plant growth regulators of plant morphogenesis and response to environmental stimuli. Although the biosynthesis pathway of auxin has been elucidated, the mechanisms regulating auxin biosynthesis remain poorly understood. The transcription of auxin biosynthetic genes is precisely regulated by complex signaling pathways.
View Article and Find Full Text PDFRice is known for its superior adaptation to ammonium (NH ) as a nitrogen source. Compared to many other cereals, it displays lower NH efflux in roots and higher nitrogen-use efficiency on NH . A critical role for GDP-mannose pyrophosphorylase (VTC1) in controlling root NH fluxes was previously documented in Arabidopsis, but the molecular pathways involved in regulating VTC1-dependent NH efflux remain unclear.
View Article and Find Full Text PDFAuxin, primarily indole-3-acetic acid (IAA), is a versatile signal molecule that regulates many aspects of plant growth, development, and stress response. Recently, microRNAs (miRNAs), a type of short non-coding RNA, have emerged as master regulators of the auxin response pathways by affecting auxin homeostasis and perception in plants. The combination of these miRNAs and the autoregulation of the auxin signaling pathways, as well as the interaction with other hormones, creates a regulatory network that controls the level of auxin perception and signal transduction to maintain signaling homeostasis.
View Article and Find Full Text PDFElevated [CO] can increase rice biomass and yield, but the degree of this increase varies substantially among cultivars. Little is known about the gene loci involved in the acclimation and adaptation to elevated [CO] in rice. Here, we report on a T-DNA insertion mutant in japonica rice exhibiting a significantly enhanced response to elevated [CO] compared with the wild type (WT).
View Article and Find Full Text PDFAmmonium (NH) inhibits primary root (PR) growth in most plant species when present even at moderate concentrations. Previous studies have shown that transport of indole-3-acetic acid (IAA) is critical to maintaining root elongation under high-NH stress. However, the precise regulation of IAA homeostasis under high-NH stress (HAS) remains unclear.
View Article and Find Full Text PDFAmmonium (NH4+) is toxic to root growth in most plants already at moderate levels of supply, but mechanisms of root growth tolerance to NH4+ remain poorly understood. Here, we report that high levels of NH4+ induce nitric oxide (NO) accumulation, while inhibiting potassium (K+) acquisition via SNO1 (sensitive to nitric oxide 1)/SOS4 (salt overly sensitive 4), leading to the arrest of primary root growth. High levels of NH4+ also stimulated the accumulation of GSNOR (S-nitrosoglutathione reductase) in roots.
View Article and Find Full Text PDFThe auxin IAA is a vital plant hormone in controlling growth and development, but our knowledge about its complicated biosynthetic pathways and molecular regulation are still limited and fragmentary. cytokinin induced root waving 2 (ckrw2) was isolated as one of the auxin-deficient mutants in a large-scale forward genetic screen aiming to find more genes functioning in auxin homeostasis and/or its regulation. Here we show that CKRW2 is identical to Histone Monoubiquitination 1 (HUB1), a gene encoding an E3 ligase required for histone H2B monoubiquitination (H2Bub1) in Arabidopsis.
View Article and Find Full Text PDFGreat progress has been achieved in developing hybrid "super rice" varieties in China. Understanding morphological root traits in super rice and the mechanisms of nitrogen acquisition by the root system are of fundamental importance to developing proper fertilisation and nutrient management practices in their production. The present study was designed to study morphological and physiological traits in hybrid super rice roots that are associated with nitrogen use efficiency (NUE).
View Article and Find Full Text PDFNH is not only the primary nitrogen for rice, a well-known NH specialist, but is also the chief limiting factor for its production. Limiting NH triggers a series of physiological and biochemical responses that help rice optimise its nitrogen acquisition. However, the dynamic nature and spatial distribution of the adjustments at the whole plant level during this response are still unknown.
View Article and Find Full Text PDFAmmonium (NH4+) is one of the principal nitrogen (N) sources in soils, but is typically toxic already at intermediate concentrations. The phytohormone abscisic acid (ABA) plays a pivotal role in responses to environmental stresses. However, the role of ABA under high-NH4+ stress in rice (Oryza sativa L.
View Article and Find Full Text PDFPlant Physiol
March 2020
Nitrate is the preferred form of nitrogen for most plants, acting both as a nutrient and a signaling molecule. However, the components and regulatory factors governing nitrate uptake in bread wheat (), one of the world's most important crop species, have remained unclear, largely due to the complexity of its hexaploid genome. Here, based on recently released whole-genome information for bread wheat, the high-affinity nitrate transporter2 () and the nitrate-assimilation-related () gene family are characterized.
View Article and Find Full Text PDFAmmonium (NH4+) toxicity inhibits shoot growth in Arabidopsis, but the underlying mechanisms remain poorly characterized. Here, we show that a novel Arabidopsis mutant, ammonium tolerance 1 (amot1), exhibits enhanced shoot growth tolerance to NH4+. Molecular cloning revealed that amot1 is a new allele of EIN3, a key regulator of ethylene responses.
View Article and Find Full Text PDFTamarix ramosissima Ledeb., a major host plant for the parasitic angiosperm Cistanche tubulosa, and known for its unique drought tolerance, has significant ecological and economic benefits. However, the mechanisms of nitrogen acquisition by the T.
View Article and Find Full Text PDFThe root tip zone is regarded as the principal action site for iron (Fe) toxicity and is more sensitive than other root zones, but the mechanism underpinning this remains largely unknown. We explored the mechanism underpinning the higher sensitivity at the Arabidopsis root tip and elucidated the role of nitric oxide (NO) using NO-related mutants and pharmacological methods. Higher Fe sensitivity of the root tip is associated with reduced potassium (K ) retention.
View Article and Find Full Text PDFAmmonium (NH) is the predominant nitrogen (N) source in many natural and agricultural ecosystems, including flooded rice fields. While rice is known as an NH-tolerant species, it nevertheless suffers NH toxicity at elevated soil concentrations. NH excess rapidly leads to the disturbance of various physiological processes that ultimately inhibit shoot and root growth.
View Article and Find Full Text PDF