An Overview of the Mechanisms through Which Plants Regulate ROS Homeostasis under Cadmium Stress.

Antioxidants (Basel)

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cadmium (Cd) is a non-essential and highly toxic element to all organic life forms, including plants and humans. In response to Cd stress, plants have evolved multiple protective mechanisms, such as Cd chelation, vesicle sequestration, the regulation of Cd uptake, and enhanced antioxidant defenses. When Cd accumulates in plants to a certain level, it triggers a burst of reactive oxygen species (ROS), leading to chlorosis, growth retardation, and potentially death. To counteract this, plants utilize a complex network of enzymatic and non-enzymatic antioxidant systems to manage ROS and protect cells from oxidative damage. This review systematically summarizes how various elements, including nitrogen, phosphorus, calcium, iron, and zinc, as well as phytohormones such as abscisic acid, auxin, brassinosteroids, and ethylene, and signaling molecules like nitric oxide, hydrogen peroxide, and hydrogen sulfide, regulate the antioxidant system under Cd stress. Furthermore, it explores the mechanisms by which exogenous regulators can enhance the antioxidant capacity and mitigate Cd toxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505430PMC
http://dx.doi.org/10.3390/antiox13101174DOI Listing

Publication Analysis

Top Keywords

plants
5
overview mechanisms
4
mechanisms plants
4
plants regulate
4
regulate ros
4
ros homeostasis
4
homeostasis cadmium
4
cadmium stress
4
stress cadmium
4
cadmium non-essential
4

Similar Publications

Accurate determination of the parameters of each high purity germanium, HPGe detectors ensure the precision of quantitative results obtained from spectrum analysis. This study presents a comprehensive performance evaluation and long-term quality control assessment of a high-purity germanium (HPGe) gamma spectrometry system that has been operational for over 15 years. Key spectrometric measures were recorded, including energy resolution, peak shape ratios, asymmetry, peak-to-Compton ratio, relative efficiency, electronic noise, minimum detectable activity (MDA), and repeatability and reproducibility of the system.

View Article and Find Full Text PDF

Myocardial injury constitutes a life-threatening complication of sepsis, driven by synergistic oxidative-inflammatory pathology involving dysregulated production of reactive oxygen species (ROS), reactive nitrogen species (RNS), and proinflammatory cytokines. This pathophysiological cascade remarkably elevates morbidity and mortality rates in septic patients, emerging as a key contributor to poor clinical outcomes. Despite its clinical significance, no clinically validated therapeutics currently exist for managing septic cardiomyopathy.

View Article and Find Full Text PDF

This study presents the first comprehensive sensory-guided investigation into the odor-active compounds of dried hemp ( L.) flowers. Using gas chromatography-olfactometry (GC-O) in combination with aroma extract dilution analysis (AEDA), 52 odor-active compounds were identified across six cannabidiol-rich cultivars.

View Article and Find Full Text PDF

Protein Deamidation Reduced Digestive Resistance and Amyloid Antigenicity of Soy Proteins via Depolymerization.

J Agric Food Chem

September 2025

Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.

Soy protein remains a key component of plant-based food development, but its application is challenged by inherent allergenicity. Previous work identified that native amyloid-like protein aggregates in soy 7S globulin that resist gastrointestinal digestion and exhibit pronounced antigenicity. Herein, we demonstrate that protein deamidation significantly enhances proteolysis under an infant gastrointestinal digestion model, leading to ∼80 and 50% reductions in IgG- and IgE-binding capacities, respectively.

View Article and Find Full Text PDF

Rising atmospheric CO exposes plants to high-CO environments, while excessive nitrogen fertilizer use degrades soil, highlighting the need to reduce nitrogen input and cultivate vigorous cucumber seedlings under HC-LN conditions. Calcineurin B-like proteins (CBLs) sense calcium signals and regulate carbon/nitrogen metabolism via CBL-interacting protein kinases (CIPKs), though their roles in cucumber under HC-LN conditions are unclear. Here, we identified seven and 19 genes.

View Article and Find Full Text PDF