Publications by authors named "Dechao Zhang"

We propose an online knowledge distillation method using a teacher-student model for nonlinear equalization in high-symbol-rate dense wavelength division multiplexing (DWDM) system spanning the S+C+L bands. The system features 195 WDM channels with 100 GHz spacing, transmitting 98 GBaud polarization division multiplexing (PDM) probability constellation shaping (PCS) 256-quadrature amplitude modulation (QAM) signals over 150 km of G.654.

View Article and Find Full Text PDF

In situ polymerized polyether electrolytes are promising for solid-state Li metal batteries due to their high ionic conductivity and excellent interfacial contact. However, their practical application is hindered by Li dendrite formation, interfacial degradation, and limited oxidative stability. Herein, we propose an in situ polymerized polyfluorinated crosslinked polyether electrolyte (PDOL-OFHDBO), synthesized by copolymerizing 1,3-dioxolane (DOL) with 2,2'-(2,2,3,3,4,4,5,5-octafluorohexane-1,6-diyl)bis(oxirane) (OFHDBO) as a polyfluorinated crosslinker.

View Article and Find Full Text PDF

Natural products and their extracts are increasingly considered valuable sources for small-molecule anti-cancer drugs. This study investigates the biological impacts of isogarcinol (ISO) on breast cancer (BC) cells and delves into the underlying mechanisms. In vitro, treatment of ISO at 13 μM substantially reduced the viability, proliferation, and mobility of BC.

View Article and Find Full Text PDF

Zinc-ion batteries have demonstrated promising potential for future energy storage, whereas drawbacks, including dendrite growth, hydrogen evolution reaction, and localized deposition, heavily hinder their development for practical applications. Herein, unlike elaborated structural design and electrolyte excogitation, we introduce an effective parts-per-million (ppm)-scale electrolyte additive, phosphonoglycolic acid (PPGA), to overcome the intrinsic issues of zinc negative electrode in mild acidic aqueous electrolytes. Profiting from absorbed PPGA on zinc surface and its beneficial interaction with hydrogen bonds of adjacent water molecules, stable symmetric stripping/plating of zinc in aqueous ZnSO electrolyte at around 25 C was achieved, procuring 362 and 350 days of operation at 1 mA cm, 1 mAh cm and 10 mA cm, 1 mAh cm, respectively.

View Article and Find Full Text PDF

Carbonic anhydrases (CAs) has garnered increasing attention in carbon capture, utilization and storage (CCUS) due to their ecological friendliness. However, most of them suffer susceptibility to deactivation in harsh conditions. Herein, a reliable dataset was adopted for creating ancestral CAs through an optimized ancestral sequence reconstruction (ASR) method.

View Article and Find Full Text PDF

The growing potential of low-dimensional metal-halide perovskites as conversion-type cathode materials is limited by electrochemically inert B-site cations, diminishing the battery capacity and energy density. Here, we design a benzyltriethylammonium tellurium iodide perovskite, (BzTEA)TeI, as the cathode material, enabling X- and B-site elements with highly reversible chalcogen- and halogen-related redox reactions, respectively. The engineered perovskite can confine active elements, alleviate the shuttle effect and promote the transfer of Cl on its surface.

View Article and Find Full Text PDF

Oligotrophs are predominant in nutrient-poor environments, but copiotrophic bacteria may tolerate conditions of low energy and can also survive and thrive in these nutrient-limited conditions. In the present study, we isolated 648 strains using a dilution plating method after enrichment for low-nutrient conditions. We collected 150 seawater samples at 21 stations in different parts of the water column at the Zhenbei Seamount in the South China Sea.

View Article and Find Full Text PDF

Ionogel polymer electrolyte (IPE), incorporating ionic liquid (IL) within a polymer matrix, presents a promising avenue for safe quasi-solid-state lithium metal batteries. However, sluggish Li kinetics, resulting from the formation of [Li(anion)] clusters and the occupation of Li transport sites by organic cations, limit their practical applications. In this study, we have developed zwitterionic bottlebrush polymers-based IPE with promoted Li conduction by employing poly(sulfobetaine methacrylate)-grafted poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVC-g-PSBMA) bottlebrushes as matrices of IL.

View Article and Find Full Text PDF

The order , belonging to class , is globally distributed in various ecosystems. Currently, this order comprised 12 families that show vast phenotypic, ecological and genotypic variation. The classification of at the family level is currently mainly based on 16S rRNA gene sequencing analysis and the presence of shared phenotypic characteristics, resulting in noticeable anomalies.

View Article and Find Full Text PDF

Organic materials are promising candidates for the electrodes of aqueous zinc-ion batteries due to their nonmetallic nature, environmental friendliness, and cost-effectiveness. However, they often suffer from significant dissolution during the charge-discharge process, which poses a major hurdle to their practical applications. Inspired by membrane-less organelles in cells, a simple and versatile strategy is proposed-constructing a Janus catholyte/cathode structured electrode based on liquid-liquid phase separation, in which redox-active organic molecules are confined in the liquid state within the activated carbon, thereby eliminating the volume effect and preventing their diffusion into the electrolyte.

View Article and Find Full Text PDF

The vibration pretreatment-microwave curing process can achieve high-quality molding under low-pressure conditions and is widely used in the curing of resin-based composites. This study investigated the effects of the vibration pretreatment process parameters on the void content and the fiber weight fraction of T700/TRE231; specifically, their influence on the interlaminar shear strength and impact strength of the composite. Initially, an orthogonal experimental design was employed with interlaminar shear strength as the optimization target, where vibration acceleration was determined as the primary factor and dwell time as the secondary factor.

View Article and Find Full Text PDF

The understanding of nonlinear propagation effects in low-crosstalk few-mode fiber is crucial for a weakly coupled mode-division multiplexed system. In this Letter, we report the first, to the best of our knowledge, experimental verification of the advantage of intramodal dispersion on mitigating intramodal cross-phase modulation in a weakly coupled few-mode fiber transmission. The experimental system is established over a 70-km multiple-ring-core few-mode fiber accommodating 6 linearly polarized modes, based on which the influences of intramodal cross-phase modulation on transmission performances of each linearly polarized mode are evaluated.

View Article and Find Full Text PDF

The primary challenge during the secondary bonding process of full-height honeycomb sandwich structures is the aramid honeycomb core's height shrinkage. This paper systematically investigated the height evolution behavior of the honeycomb core by using a creep testing machine. The results showed that the out-of-plane compression deformation curve of aramid honeycomb cores is mainly divided into three stages: the dehumidification stage, the pressurization stage and the creep stage.

View Article and Find Full Text PDF

Zinc metal is recognized as the most promising anode for aqueous energy storage but suffers from severe dendrite growth and poor reversibility. However, the coulombic efficiency lacks specificity for zinc dendrite growth, particularly in Zn||Zn symmetric cells. Herein, a novel indicator (f) based on the characteristic crystallization peaks is proposed to evaluate the growth and distribution of zinc dendrites.

View Article and Find Full Text PDF

Residual solvents in vinylidene fluoride (VDF)-based solid polymer electrolytes (SPEs) have been recognized as responsible for their high ionic conductivity. However, side reactions by the residual solvents with the lithium (Li) metal induce poor stability, which has been long neglected. This study proposes a strategy to achieve a delicate equilibrium between ion conduction and electrode stability for VDF-based SPEs.

View Article and Find Full Text PDF

The well-known limitations of spray cooling on high-temperature solids at the Leidenfrost temperature point have been significantly improved by a composite structure of steel micropillar arrays and insulating thin films. However, the physical mechanism of a single droplet impact on the walls of high-temperature composite structures in spray cooling remains elusive. We have experimentally studied and quantified the kinematic and thermal transfer characteristics of a single droplet impacting high-temperature micropillar arrays with fiber membrane composite structures.

View Article and Find Full Text PDF

An integrated quantum light source is increasingly desirable in large-scale quantum information processing. Despite recent remarkable advances, a new material platform is constantly being explored for the fully on-chip integration of quantum light generation, active and passive manipulation, and detection. Here, for the first time, we demonstrate a gallium nitride (GaN) microring based quantum light generation in the telecom C-band, which has potential toward the monolithic integration of quantum light source.

View Article and Find Full Text PDF

With the increasing need for reliable storage systems, the conversion-type chemistry typified by bromine cathodes attracts considerable attention due to sizeable theoretical capacity, cost efficiency, and high redox potential. However, the severe loss of active species during operation remains a problem, leading researchers to resort to concentrated halide-containing electrolytes. Here, profiting from the intrinsic halide exchange in perovskite lattices, a novel low-dimensional halide hybrid perovskite cathode, TmdpPb[IBr], which serves not only as a halogen reservoir for reversible three-electron conversions but also as an effective halogen absorbent by surface Pb dangling bonds, C─H…Br hydrogen bonds, and Pb─I…Br halogen bonds, is proposed.

View Article and Find Full Text PDF

We investigate the robustness of a modified multi-trench fiber (MTF) design with two gaps numerically. The excellent suppression of high-order modes is demonstrated over a wide range of the gap misalignment and the fundamental mode loss is barely affected even with the 5 dB/m scattering loss in gaps at the modified two-gap MTF for the first time. Therefore, the required fabrication accuracy decreases.

View Article and Find Full Text PDF

The co-route optical fibers, comprising both co-cable and co-trench fibers, pose a significant potential risk to network service quality assurance by operators. They are incapable of achieving high-precision recognition and visual state management. In this study, we gathered both static and dynamic optical fiber data using a linewidth tunable light source (LTLS) and introduced a multimodal detection architecture that applies ensemble learning to the collected data.

View Article and Find Full Text PDF

As the need for sustainable battery chemistry grows, non-metallic ammonium ion (NH ) batteries are receiving considerable attention because of their unique properties, such as low cost, nontoxicity, and environmental sustainability. In this study, the solvation interactions between NH and solvents are elucidated and design principles for NH weakly solvated electrolytes are proposed. Given that hydrogen bond interactions dominate the solvation of NH and solvents, the strength of the solvent's electrostatic potential directly determines the strength of its solvating power.

View Article and Find Full Text PDF

The deployment of lithium metal anode in solid-state batteries with polymer electrolytes has been recognized as a promising approach to achieving high-energy-density technologies. However, the practical application of the polymer electrolytes is currently constrained by various challenges, including low ionic conductivity, inadequate electrochemical window, and poor interface stability. To address these issues, a novel eutectic-based polymer electrolyte consisting of succinonitrile (SN) and poly (ethylene glycol) methyl ether acrylate (PEGMEA) is developed.

View Article and Find Full Text PDF

Although conversion-type iodine-based batteries are considered promising for energy storage systems, stable electrode materials are scarce, especially for high-performance multi-electron reactions. The use of tin-based iodine-rich 2D Dion-Jacobson (DJ) ODASnI (ODA: 1,8-octanediamine) perovskite materials as cathode materials for iodine-based batteries is suggested. As a proof of concept, organic lithium-perovskite and aqueous zinc-perovskite batteries are fabricated and they can be operated based on the conventional one-electron and advanced two-electron transfer modes.

View Article and Find Full Text PDF

To better understand bacterial communities and metabolism under nitrogen deficiency, 154 seawater samples were obtained from 5 to 200 m at 22 stations in the photic zone of the Western North Pacific Ocean. Total 634 nitrate-utilizing bacteria were isolated using selective media and culture-dependent methods, and 295 of them were positive for nitrate reduction. These nitrate-reducing bacteria belonged to 19 genera and 29 species and among them, Qipengyuania flava, Roseibium aggregatum, Erythrobacter aureus, Vibrio campbellii, and Stappia indica were identified from all tested seawater layers of the photic zone and at almost all stations.

View Article and Find Full Text PDF
Article Synopsis
  • Ferromanganese nodule-bearing deep-sea sediments in the Clarion-Clipperton Fracture Zone create a unique habitat for microorganisms, with high iron levels and low degradable nutrients that challenge survival.
  • Analysis of seven sediment samples led to the reconstruction of 179 metagenome-assembled genomes, revealing a diverse microbial community primarily classified into 21 bacterial phyla and 1 archaeal phylum, with most remaining unclassified at the species level.
  • Microorganisms in these sediments utilize various mechanisms to resist heavy metals and rely on redox reactions to obtain energy, indicating that chemical processes involving metals and sulfur compounds are key survival strategies in this extreme environment.
View Article and Find Full Text PDF