Publications by authors named "Dagan Zhang"

As one of the most important technologies in molecular biology, polymerase chain reaction (PCR) has been widely recognized in many fields such as infectious disease diagnosis due to its high sensitivity, specificity, and accuracy. Attempts in this field are focused on developing efficient heating mechanism to achieve efficient thermal cycles. Recently, with the in-depth research into photothermal effects, photonic PCR technology based on photothermal nanomaterials has gradually demonstrated potential to develop a new generation of ultrafast PCR instrument.

View Article and Find Full Text PDF

In this study, we present an ultrasensitive and specific multiplexed detection method for SARS-CoV-2 and influenza (Flu) utilizing CRISPR/Cas13a technology combined with a hydrogel-encapsulated photonic crystal (PhC) barcode integrated with hybridization chain reaction (HCR). The barcodes, characterized by core-shell structures, are fabricated through partial replication of periodically ordered hexagonally close-packed silicon dioxide beads. Consequently, the opal hydrogel shell of these barcodes features abundant interconnected pores that provide a substantial surface area for probe immobilization.

View Article and Find Full Text PDF

Multiplexed, rapid, and accurate virus quantification is of great value in biomedical detection. Herein, we proposed a label-free multiplexed virus screening quantitative biosensor based on color core-shell hydrogel photonic crystal (PhC) barcode integrated rolling circle amplification (RCA). The composite hydrogel shell was formed by acrylic acid and polyethylene glycol diacrylate, and the core silica photonic crystal was used as a detector.

View Article and Find Full Text PDF

Bladder cancer (BC) is a prevalent malignant tumor of the urinary system, known for its rapid progression and high likelihood of recurrence. Despite ongoing efforts, clinical diagnosis and treatment of BC remain limited. As such, there is an urgent need to investigate potential mechanisms underlying this disease.

View Article and Find Full Text PDF

Drug delivery systems are becoming increasingly utilized; however, a major challenge in this field is the insufficient target of tissues or cells. Although efforts with engineered nanoparticles have shown some success, issues with targeting, toxicity and immunogenicity persist. Conversely, living cells can be used as drug-delivery vehicles because they typically have innate targeting mechanisms and minimal adverse effects.

View Article and Find Full Text PDF

Early monitoring of cardiovascular disease (CVD) is crucial for its treatment and prognosis. Hence, highly specific and sensitive detection method is urgently needed. In this study, we propose a novel herringbone microfluid chip with aptamer functionalized core-shell photonic crystal (PhC) barcode integration for high throughput multiplex CVD detection.

View Article and Find Full Text PDF

The early detection of procalcitonin (PCT) is crucial for diagnosing bacterial infections due to its high sensitivity and specificity. While colloidal gold colorimetric and immune-chemiluminescence methods are commonly employed in clinical detection, the former lacks sensitivity, and the latter faces challenges with a brief luminescence process and an elevated background. Here, we introduce a novel approach for the quantitative analysis of PCT using surface-enhanced Raman spectroscopy (SERS), leveraging the enhanced properties of metal nanoparticles.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a prevalent joint disease primarily induced by overstrain, leading to disability and significantly impacting patients' quality of life. However, current OA studies lack an ideal model, which can recapitulate the high peripheral strain of the joint and precisely model the disease onset process. In this paper, we propose a novel cartilage-on-a-chip platform that incorporates a biohybrid hydrogel comprising Neodymium (NdFeB)/Poly-GelMA-HAMA remote magneto-control hydrogel film.

View Article and Find Full Text PDF

Adenosine receptors are P1 class of purinergic receptors that belong to G protein-coupled receptors. There are 4 subtypes of adenosine receptors, namely A1, A2A, A2B, and A3. A2AR has a high affinity for the ligand adenosine.

View Article and Find Full Text PDF

Dendritic cells (DCs)-based immunotherapy has shown immense promise in systemic lupus erythematosus (SLE) treatment. However, existing carrier strategies such as polymers, liposomes, and polypeptides, are difficult to achieve active targeting to DCs due to their intricate interaction with biological systems. Since DCs represent a class of phagocytes responsible for the removal of senescent or damaged erythrocytes, we hypothesize that hybrid vesicles containing erythrocytes membrane components could be presented to be potent drug carriers to target DCs specifically.

View Article and Find Full Text PDF

Knee osteoarthritis is a chronic disease caused by the deterioration of the knee joint due to various factors such as aging, trauma, and obesity, and the nonrenewable nature of the injured cartilage makes the treatment of osteoarthritis challenging. Here, we present a three-dimensional (3D) printed porous multilayer scaffold based on cold-water fish skin gelatin for osteoarticular cartilage regeneration. To make the scaffold, cold-water fish skin gelatin was combined with sodium alginate to increase viscosity, printability, and mechanical strength, and the hybrid hydrogel was printed according to a pre-designed specific structure using 3D printing technology.

View Article and Find Full Text PDF

High throughput biological analysis has become an important topic in modern biomedical research and clinical diagnosis. The flow encoding scheme based on the encoding microcarriers provides a feasible strategy for the multiplexed biological analysis. Different encoding characteristics invest the microcarriers with different encoding mechanisms.

View Article and Find Full Text PDF

Acute myocardial infarction (AMI) is one of the most fatal diseases in the world in recent decades. Because rapid and accurate determination of AMI has the potential to save millions of lives globally, the development of new diagnostic method is of great significance. Here, we designed a magnetic responsive structural color core-shell hydrogel microcarrier as a novel platform for a high-throughput detection of a variety of cardiovascular biomarkers.

View Article and Find Full Text PDF

Water contamination resulting from heavy metal ions (HMIs) poses a severe threat to public health and the ecosystem. Attempts are tending to develop functional materials to realize efficient and intelligent adsorption of HMIs. Herein, self-propelled structural color cylindrical micromotors (SCCMs) with reversible HMIs adsorption capacity and self-reporting property are presented.

View Article and Find Full Text PDF

Developing a self-reporting bioadhesive patch that has strong adhesion to the wet tissues and meanwhile can avoid adhering to the adjacent tissues is a current research difficulty and challenge. In this paper, inspired by the wet adhesion of spider web, slippery surface of Nepenthes, and structural color phenomena of chameleons, a novel structural color medical patch with surface dual-properties of wet bioadhesion and slipperiness for internal tissue repair based on inverse opal scaffold is presented. The adhesive surface made by poly(acrylic acid)-polyethylene glycol-N-hydroxysuccinimide ester and gelatin hydrogel can attain tough adhesion to internal wet tissues by absorbing tissue interfacial water and the covalent cross-linking between the hydrogel and tissue.

View Article and Find Full Text PDF

Background: The nervous system is critical to the operation of various organs and systems, while novel methods with designable neural induction remain to exploit.

Results: Here, we present a conductive inverse opal film with anisotropic elliptical porous patterns for nerve orientation induction. The films are fabricated based on polystyrene (PS) inverse opal scaffolds with periodical elliptical porous structure and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) mixed polyacrylamide (PAAm) polymers fillers.

View Article and Find Full Text PDF

Micromotors with self-propelling ability demonstrate great values in highly sensitive analysis. Developing novel micromotors to achieve label-free multiplex assay is particularly intriguing in terms of detection efficiency. Herein, structural color micromotors (SCMs) were developed and employed for this purpose.

View Article and Find Full Text PDF

This study aimed to expand our understanding of metformin (Met) in inhibiting hepatocellular carcinoma (HCC) progression and to investigate its underlying mechanism. Met was administrated to HCC cells at 5, 10, and 20 μM, after which the cell phenotype was evaluated. RNA-seq cluster analysis was used to screen for target genes modulated by Met.

View Article and Find Full Text PDF

As a fundamental feature of solid surfaces, wettability is playing an increasingly important role in our daily life. Benefitting from the inspiration of biological paradigms and the development in manufacturing technology, numerous wettability materials with elaborately designed surface topology and chemical compositions have been fabricated. Based on these advances, wettability materials have found broad technological implications in various fields ranging from academy, industry, agriculture to biomedical engineering.

View Article and Find Full Text PDF

Chimeric antigen receptor T (CAR-T) cell therapy has achieved remarkable clinical efficacy in treatment of many malignancies especially for B-cell hematologic malignancies. However, the application of CAR-T cells is hampered by potentially adverse events, of which cytokine release syndrome (CRS) is one of the severest and the most studied. Local cytokine-release syndrome (L-CRS) at particular parts of the body has been reported once in a while in B-cell lymphoma or other compartmental tumors.

View Article and Find Full Text PDF

Therapeutic nanoparticles are designed to enhance efficacy, real-time monitoring, targeting accuracy, biocompatibility, biodegradability, safety, and the synergy of diagnosis and treatment of diseases by leveraging the unique physicochemical and biological properties of well-developed bio-nanomaterials. Recently, bio-inspired metal nanoclusters (NCs) consisting of several to roughly dozens of atoms (<2 nm) have attracted increasing research interest, owing to their ultrafine size, tunable fluorescent capability, good biocompatibility, variable metallic composition, and extensive surface bio-functionalization. Hybrid core-shell nanostructures that effectively incorporate unique fluorescent inorganic moieties with various biomolecules, such as proteins (enzymes, antigens, and antibodies), DNA, and specific cells, create fluorescently visualized molecular nanoparticle.

View Article and Find Full Text PDF

The in-depth development of biological materials, especially natural polymer materials, has injected strong vitality into clinical wound treatment. Here, a new type of controllable responsive microparticles composed of several natural polymer materials was presented for drug release and wound healing. These hybrid microparticles consisted of silk fibroin, gelatin, agarose, and black phosphorus quantum dots (BPQDs) and were loaded with growth factors and antibacterial peptides.

View Article and Find Full Text PDF

Electronic skins with distinctive features have attracted remarkable attention from researchers because of their promising applications in flexible electronics. Here, we present novel morphologically conductive hydrogel microfibers with MXene encapsulation by using a multi-injection coflow glass capillary microfluidic chip. The coaxial flows in microchannels together with fast gelation between alginate and calcium ions ensure the formation of hollow straight as well as helical microfibers and guarantee the encapsulation of MXene.

View Article and Find Full Text PDF

Wound healing is a ubiquitous healthcare problem in clinical wound management. In this paper, the fabrication of a graphene hybrid supramolecular hydrogel (GS hydrogel) for wound dressing applications is demonstrated. The hydrogel is composed of two components, including -acryloyl glycinamide (NAGA) as the scaffold and graphene as the photothermally responsive active site for photothermal therapy.

View Article and Find Full Text PDF