Ecotoxicol Environ Saf
August 2025
Organophosphorus flame retardants (OPFRs), widely adopted as substitutes for restricted brominated flame retardants (BFRs), have emerged as significant environmental contaminants in regions burdened by electronic waste (e-waste) recycling activities. Consequently, this study aimed to investigate the relationship between prenatal exposure to OPFRs and infant birth outcomes in an e-waste area. We used programmed-temperature vaporizer gas chromatography-mass spectrometry (PTV-GC/MS) to measure the concentrations of thirteen OPFRs in umbilical cord blood samples from 131 mother-infant pairs in Taizhou.
View Article and Find Full Text PDFThe study focuses on the Xilingol grassland in Inner Mongolia, collecting climate, surface, and human-related data for various banners and counties in Xilingol League. Initially, the correlation coefficient method was used to select the nine indicator factors most closely related to the degree of land desertification. Then, the Analytic Hierarchy Process (AHP) was utilized to rank the weights of these factors, constructing a system for evaluating the degree of land desertification, and an evaluation model was established using the comprehensive index method.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
July 2025
Purpose: Accurate airway anatomical labeling is crucial for clinicians to identify and navigate complex bronchial structures during bronchoscopy. Automatic airway labeling is challenging due to significant anatomical variations. Previous methods are prone to generate inconsistent predictions, hindering preoperative planning and intraoperative navigation.
View Article and Find Full Text PDFEcotoxicol Environ Saf
March 2025
Hexavalent chromium [Cr(VI)] exposure poses substantial environmental and health risks, especially in occupational settings, where it has been linked to genomic instability. Our previous research demonstrated that Cr(VI) exposure could induce DNA copy number (CN) variation. Here, we examined the role of Ubiquitin A-52 ribosomal protein fusion product 1 (UBA52) in stabilizing rDNA CN under Cr(VI) exposure by analyzing data from Cr(VI)-exposed workers and matched controls.
View Article and Find Full Text PDFIEEE Trans Med Imaging
April 2025
Test-time adaptation (TTA) has emerged as a promising paradigm to handle the domain shifts at test time for medical images from different institutions without using extra training data. However, existing TTA solutions for segmentation tasks suffer from 1) dependency on modifying the source training stage and access to source priors or 2) lack of emphasis on shape-related semantic knowledge that is crucial for segmentation tasks. Recent research on visual prompt learning achieves source-relaxed adaptation by extended parameter space but still neglects the full utilization of semantic features, thus motivating our work on knowledge-enriched deep prompt learning.
View Article and Find Full Text PDFNnNAC100-NnSBEII modules enhance starch content of the rhizome in Nelumbo nucifera Gaertn. Nelumbo nucifera Gaertn. is a popular aquatic vegetable and traditional Chinese medicine whose quality and taste are mainly determined by the starch.
View Article and Find Full Text PDFACS Sens
November 2024
With the continuous development of DNA nanotechnology, DNA walkers have attracted increased attention because of their autonomous and progressive walking along predesigned tracks. Compared with the traditional DNA walkers, the emerged multipedal DNA walkers showed their special charm with sustainable walking capability, higher reaction efficiency, expanded walking region, and improved amplification capability. Consequently, multipedal DNA walkers have developed rapidly and shown potential in biosensing applications.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
Int J Biol Macromol
August 2024
Leaf petiole or stem strength is an important agronomic trait affecting the growth of underground organs as a channel for material exchange and plays a vital role in the quality and yield of crops and vegetables. There are two different types of petioles in lotus, floating leaf petioles and vertical leaf petioles; however, the internal difference mechanism between these petioles is unclear. In this study, we investigated the differences between the initial vertical leaf petioles and the initial floating leaf petioles based on RNA sequencing (RNA-seq), and >2858 differentially expressed genes were annotated.
View Article and Find Full Text PDFThe development of sensitive and efficient analytical methods for multiple biomarkers is crucial for cancer screening at early stage. MicroRNAs (miRNAs) are a kind of biomarkers with diagnostic potential for cancer. However, the ultrasensitive and logical analysis of multiple miRNAs with simple operation still faces some challenges.
View Article and Find Full Text PDFDiamond electrochemistry is primarily influenced by quantities of sp-carbon, surface terminations, and crystalline structure. In this work, a new dimension is introduced by investigating the effect of using substrate-interlayers for diamond growth. Boron and nitrogen co-doped nanocrystalline diamond (BNDD) films are grown on Si substrate without and with Ti and Ta as interlayers, named BNDD/Si, BNDD/Ti/Si, and BNDD/Ta/Ti/Si, respectively.
View Article and Find Full Text PDFWith the emergence of microRNA (miRNA) as a promising biomarker in cancer diagnosis, it is significant to develop multiple analyses of miRNAs. However, it still faces difficulties in ensuring the sensitivity and accuracy during multiplex detection owing to the low abundance and experimental deviation of miRNAs. In this work, a flexible-arranged biomimetic array integrated with parallel entropy-driven circuits (EDCs) was developed for ultrasensitive, multiplex, reliable, and high-throughput detection of miRNAs.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2024
Developing non-precious metal-based electrocatalysts operating in high-current densities is highly demanded for the industry-level electrochemical hydrogen evolution reaction (HER). Here, we report the facile preparation of binder-free MoC-MoN heterostructures on carbon nanowalls/diamond (CNWs/D) via ultrasonic soaking followed by an annealing treatment. The experimental investigations and density functional theory calculations reveal the downshift of the d-band center caused by the heterojunction between MoC/MoN triggering highly active interfacial sites with a nearly zero ∆ value.
View Article and Find Full Text PDFElectrochemical capacitors (ECs) show great perspective in alternate current (AC) filtering once they simultaneously reach ultra-fast response and high capacitance density. Nevertheless, the structure-design criteria of the two key properties are often mutually incompatible in electrode construction. Herein, it is proposed that combining vertically oriented porous carbon with enhanced interfacial capacitance (C) can efficiently solve this issue.
View Article and Find Full Text PDFLotus rhizome rot caused by Fusarium oxysporum is a common vascular fungal disease in plants that significantly impacts the yield. However, only a few studies have studied the mechanism of Nelumbo nucifera responding to lotus rhizome rot. Here, we investigated the pathogenic genes and miRNAs in lotus rhizome rot to uncover the pathogenic resistant mechanisms by transcriptome and small RNA sequencing of lotus roots after inoculation with Fusarium oxysporum.
View Article and Find Full Text PDFAnal Chim Acta
October 2023
The development of label-free and sensitive detection of pathogenic bacteria is of great significance for disease prevention and public health protection. In this study, an originally bent structure, named as J-shaped optical fiber probe, was first designed to engineer a localized surface plasmon resonance (LSPR) aptamer biosensor for the rapid and ultrasensitive detection of Helicobacter pylori (H. pylori).
View Article and Find Full Text PDFThe development of an array for high-throughput and logical analysis of biomarkers is significant for disease diagnosis. DNA-templated copper nanoclusters (CuNCs) have a strong potential to serve as a label-free photoluminescence source in array platforms, but their luminescent stability and sensitivity need to be improved. Herein, we report a facile, sensitive, and robust biomimetic array assay by integrating with stable luminescent CuNCs and entropy-driven nanomachine (EDN).
View Article and Find Full Text PDFMed Image Anal
October 2023
Self-supervised learning (SSL) has achieved remarkable performance in various medical imaging tasks by dint of priors from massive unlabeled data. However, regarding a specific downstream task, there is still a lack of an instruction book on how to select suitable pretext tasks and implementation details throughout the standard "pretrain-then-finetune" workflow. In this work, we focus on exploiting the capacity of SSL in terms of four realistic and significant issues: (1) the impact of SSL on imbalanced datasets, (2) the network architecture, (3) the applicability of upstream tasks to downstream tasks and (4) the stacking effect of SSL and common policies for deep learning.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
August 2023
Endomicroscopy is an emerging imaging modality for real-time optical biopsy. One limitation of existing endomicroscopy based on coherent fibre bundles is that the image resolution is intrinsically limited by the number of fibres that can be practically integrated within the small imaging probe. To improve the image resolution, Super-Resolution (SR) techniques combined with image priors can enhance the clinical utility of endomicroscopy whereas existing SR algorithms suffer from the lack of explicit guidance from ground truth high-resolution (HR) images.
View Article and Find Full Text PDFCirculating cell-free DNA (cfDNA) is a promising biomarker of liquid biopsy, but it still faces some difficulties in achieving sensitive and convenient detection. Herein, an Ω-shaped fiber optic localized surface plasmon resonance (FO-LSPR) biosensor based on hybridization chain reaction (HCR) coupled with gold nanoparticles (AuNPs) was developed, and applied in simple and sensitive detection of cfDNA. Specifically, one-base mismatch was designed in HCR hairpins (H1 and H2) to obtain high reaction efficiency, and AuNPs was introduced onto H1 through poly-adenine to construct HCR coupled with AuNPs strategy.
View Article and Find Full Text PDFPlants (Basel)
January 2023
The plant-specific transcription factor family YABBY plays important roles in plant responses to biotic and abiotic stresses. Although the function of YABBY has been identified in many species, systematic analysis in lotus () is still relatively lacking. The present study aimed to characterize all of the genes in lotus and obtain better insights into in response to salt stress by depending on ABA signaling.
View Article and Find Full Text PDFJ Mater Chem B
July 2022
Catalytic hairpin assembly (CHA) appears to be a particularly appealing nucleic acid circuit because of its powerful amplification capability, simple protocols, and enzyme-free and isothermal conditions, and can combine with various signal output modes for the biosensing of various analytes. Especially in the last five years, vast CHA related studies have sprung up. With the deep exploration of the CHA mechanism, some novel and excellent CHA strategies have been proposed; meanwhile the CHA cascade strategies with various amplification techniques further improve the analysis performance.
View Article and Find Full Text PDFPolymers (Basel)
October 2021
A pollution flashover along an insulation surface-a catastrophic accident in electrical power system-threatens the safe and reliable operation of a power grid. Silicone rubber coatings are applied to the surfaces of other insulation materials in order to improve the pollution flashover voltage of the insulation structure. It is generally believed that the hydrophobicity of the silicone rubber coating is key to blocking the physical process of pollution flashover, which prevents the formation of continuously wet pollution areas.
View Article and Find Full Text PDFThe development of a universal, sensitive, and rapid assay platform to achieve detections of heavy metal, nucleic acid and bacteria is of great significance but it also faces a thorny challenge. Herein, a novel and universal array platform was developed by combining photonic crystals (PCs) and DNA nanomachine. The developed array platform integrated the physical and biological signal amplification ability of PCs and DNA nanomachine, resulting in ultrasensitive detections of Hg, DNA, and Shigella sonnei with limits of detection (LODs) of 22.
View Article and Find Full Text PDF