An ultrasensitive J-shaped optical fiber LSPR aptasensor for the detection of Helicobacter pylori.

Anal Chim Acta

West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China. Electronic address:

Published: October 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The development of label-free and sensitive detection of pathogenic bacteria is of great significance for disease prevention and public health protection. In this study, an originally bent structure, named as J-shaped optical fiber probe, was first designed to engineer a localized surface plasmon resonance (LSPR) aptamer biosensor for the rapid and ultrasensitive detection of Helicobacter pylori (H. pylori). The J-shaped optical fiber probe exhibited a significant improvement in refractive index sensitivity (RIS) and LSPR signal response. Meantime, the original sequence of aptamer was truncated in order to effectively capture H. pylori on the optical fiber surface. Besides, a spacer nucleic acid with short stem-loop structure was adopted to control the aptamer density on gold nanoparticles (AuNPs) on the surface of the J-shaped optical fiber probe, which displayed a further enhancement in LSPR signal response. Benefitting from these creative designs, the proposed LSPR biosensor can realize label-free and sensitive detection of H. pylori with a detection limit as low as 45 CFU/mL and a wide linear range from 1.0 × 10 CFU/mL to 1.0 × 10 CFU/mL. At the same time, the sensing strategy can detect the pathogenic bacteria from actual water samples in one step just in 30 min without any sample pretreatment. Due to the advantages of ease-to-preparation, high sensitivity, and rapid analysis, this proposed J-shaped optical fiber LSPR aptasensor can provide a potential strategy for point-of-caring detection of pathogenic bacteria in environmental monitoring and disease diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2023.341733DOI Listing

Publication Analysis

Top Keywords

optical fiber
24
j-shaped optical
20
pathogenic bacteria
12
fiber probe
12
fiber lspr
8
lspr aptasensor
8
detection helicobacter
8
helicobacter pylori
8
label-free sensitive
8
sensitive detection
8

Similar Publications

Novel Grm6 Variant in a no b-wave (nob) Mouse Model: Phenotype Characterization and Gene Therapy.

Invest Ophthalmol Vis Sci

September 2025

Department of Ophthalmology, Edward S. Harkness Eye Institute, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, New York, United States.

Purpose: To characterize a no b-wave (nob) mouse model of congenital stationary night blindness (CSNB) caused by a Grm6 variant that disrupts photoreceptor-to-bipolar cell signaling. Additionally, we aim to evaluate the efficacy of gene therapy in restoring visual function.

Methods: The nob mouse was generated through selective breeding to regenerate the nob phenotype.

View Article and Find Full Text PDF

Preparation, Characterization, and Self-Assembly of P3HT-Based Janus Fibers via a Crystallization-Driven Self-Assembly Process.

ACS Macro Lett

September 2025

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.

Poly(3-hexylthiophene) (P3HT)-based complex topological copolymers have attracted a great deal of attention for their unique electrical and optical properties. In this contribution, the P3HT-based Janus fibers with controlled lengths were innovatively prepared by sequential crystallization-driven self-assembly (CDSA) of poly(--butylstyrene)--polyisoprene--poly(3-hexylthiophene) (PBS--PI--P3HT) triblock copolymer, cross-linking of the interlayer PI region, and dissociation of fibers in good solvent. The comprehensive characterizations showed that the PBS/P3HT Janus fibers have nearly half the width of PBS--PI--P3HT fibers and fiber lengths close to or slightly shorter than those of PBS--PI--P3HT fibers, indicating that the Janus fibers with adjustable lengths could be prepared in a large window range.

View Article and Find Full Text PDF

The binary composites of liquid () and crystalline () difluoroboron β-diketonate (BFdbk) complexes exhibited a metastable nature arising from the intricate interplay between their liquid and crystalline components in bulk. Differential scanning calorimetry (DSC) measurements indicate nearly complete miscibility of and when the fractional volume of occupied a substantial portion, corresponding to below 47 mol % of the content. In contrast, polarized optical microscopic (POM) observations unveiled that the / composites between two glass slides crystallized regardless of the content.

View Article and Find Full Text PDF

Vertically Stacked Boron Nitride/Graphene Heterostructure for Tunable Antiresonant Hollow-Core Fiber.

J Am Chem Soc

September 2025

Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Incorporating atomically thin two-dimensional (2D) materials with optical fibers expands their potential for optoelectronic applications. Recent advancements in chemical vapor deposition have enabled the batch production of these hybrid fibers, paving the way for practical implementation. However, their functionality remains constrained by the integration of a single 2D material, restricting their versatile performance.

View Article and Find Full Text PDF

This study aims at the establishment of a universally applicable etching methodology to unveil the nanoscale crystalline structure of the matrix resin in fiber reinforced thermoplastic (FRTP) composites scanning electron microscopy (SEM). The crystalline structure hierarchically consists of crystalline texture, spherulite and lamella. The details of these structures are key parameters to understand the relationship with the mechanical properties of the material for the advancement.

View Article and Find Full Text PDF