Cell Mol Life Sci
August 2025
Endothelial regeneration is critical for maintaining vascular homeostasis and inhibiting neointimal formation during vascular repair following injury. While extracellular matrix (ECM) stiffness of the vascular wall is known to influence vascular endothelial cell (EC) behavior, its role in post-injury endothelial regeneration remains poorly understood. Here, we demonstrate a dynamic change in vascular wall stiffness post-injury, with an initial transient decrease within 5Â days, followed by a subsequent increase.
View Article and Find Full Text PDFTo overcome the limitations of conventional oral drugs and nanocarrier-dependent delivery systems in atherosclerosis (AS) therapy, our work proposes an "integration of Chinese and Western medicine" approach to develop a new biomimetic traditional Chinese and Western medicine components coassembled nanoparticles (NPs), termed as MMVs/RPNPs, for targeted AS therapy. In this work, we demonstrated that ginsenoside Rb1 can coassemble with probucol without excipients to form stable carrier-free NPs, termed RPNPs. To impart the specific targeting property to atherosclerotic sites, macrophage microvesicles (MMVs) were utilized to coat the RPNPs to obtain the MMVs/RPNPs.
View Article and Find Full Text PDFMechanobiology is essential for cardiovascular structure and function and regulates the normal physiological and pathological processes of the cardiovascular system. Cells in the cardiovascular system are extremely sensitive to their mechanical environment, and once mechanical stimulation is abnormal, the homeostasis mechanism is damaged or lost, leading to the occurrence of pathological remodeling diseases. In the past 20 years, many articles concerning the mechanobiology of cardiovascular homeostasis and remodeling have been published.
View Article and Find Full Text PDFAt present, various diseases seriously threaten human life and health, and the development of nanodrug delivery systems has brought about a turnaround for traditional drug treatments, with nanoparticles being precisely targeted to improve bioavailability. Surface modification of nanoparticles can prolong blood circulation time and enhance targeting ability. The application of cell membrane-coated nanoparticles further improves their biocompatibility and active targeting ability, providing new hope for the treatment of various diseases.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
Electrical stimulation has been used clinically as an adjunct therapy to accelerate the healing of bone defects, and its mechanism requires further investigations. The complexity of the physiological microenvironment makes it challenging to study the effect of electrical signal on cells alone. Therefore, an artificial system mimicking cell microenvironment was developed to address this issue.
View Article and Find Full Text PDFSichuan Da Xue Xue Bao Yi Xue Ban
January 2024
Mechanobiology focuses on a series of important physiopathological processes, such as how cells perceive different mechanomechanical stimuli, the process of intracellular mechanotransduction, and how mechanical signals determine the behavior and fate of cells. From the initial stage of embryogenesis, to developmental biology and regenerative medicine, or even through the whole life process, mechanical signaling cascades and cellular mechanical responses in mechanobiology are of great significance in biomedical research. In recent years, research in the field of mechanobiology has undergone remarkable development.
View Article and Find Full Text PDFNat Commun
October 2023
Mechanotransduction in endothelial cells is critical to maintain vascular homeostasis and can contribute to disease development, yet the molecules responsible for sensing flow remain largely unknown. Here, we demonstrate that the discoidin domain receptor 1 (DDR1) tyrosine kinase is a direct mechanosensor and is essential for connecting the force imposed by shear to the endothelial responses. We identify the flow-induced activation of endothelial DDR1 to be atherogenic.
View Article and Find Full Text PDFIncreasing evidence suggests that hemodynamic disturbed flow induces endothelial dysfunction via a complex biological process so-called endothelial to mesenchymal transition (EndoMT). Recently, DNA methyltransferases (DNMTs) was reported as a key molecular mediator to promote EndoMT. Our understanding of how DNMTs, particularly the maintenance DNMTs, DNMT1, coordinate EndoMT is still lacking.
View Article and Find Full Text PDFBackground: The Hippo-YAP (yes-associated protein) signaling pathway is modulated in response to various environmental cues. Activation of YAP in vascular smooth muscle cells conveys the extracellular matrix stiffness-induced changes in vascular smooth muscle cells phenotype and behavior. Recent studies have established a mechanoreceptive role of receptor tyrosine kinase DDR1 (discoidin domain receptor 1) in vascular smooth muscle cells.
View Article and Find Full Text PDFDisturbed blood flow induces endothelial pro-inflammatory responses that promote atherogenesis. Nanoparticle-based therapeutics aimed at treating endothelial inflammation in vasculature where disturbed flow occurs may provide a promising avenue to prevent atherosclerosis. By using a vertical-step flow apparatus and a microfluidic chip of vascular stenosis, herein, it is found that the disk-shaped versus the spherical nanoparticles exhibit preferential margination (localization and adhesion) to the regions with the pro-atherogenic disturbed flow.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2022
Von Willebrand Factor (VWF) can promote platelet adhesion to the post-atherosclerotic regions to initiate thrombosis. The synthesis and secretion of VWF are important functions of endothelial cells (ECs). However, the mechanism through which blood flow regulates endothelial secretion of VWF remains unclear.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2021
Vascular endothelial cells are exposed to shear stresses with disturbed vs. laminar flow patterns, which lead to proinflammatory vs. antiinflammatory phenotypes, respectively.
View Article and Find Full Text PDFAtherosclerotic plaque preferentially develops in arterial curvatures and branching regions, where endothelial cells constantly experience disturbed blood flow. By contrast, the straight arteries are generally protected from plaque formation due to exposure of endothelial cells to vaso-protective laminar blood flow. However, the role of flow patterns on endothelial barrier function remains largely unclear.
View Article and Find Full Text PDFCell Death Dis
January 2020
Vascular smooth muscle cell (SMC) from arterial stenotic-occlusive diseases is featured with deficiency in mitochondrial respiration and loss of cell contractility. However, the regulatory mechanism of mitochondrial genes and mitochondrial energy metabolism in SMC remains elusive. Here, we described that DNA methyltransferase 1 (DNMT1) translocated to the mitochondria and catalyzed D-loop methylation of mitochondrial DNA in vascular SMCs in response to platelet-derived growth factor-BB (PDGF-BB).
View Article and Find Full Text PDFEndothelial cell apoptosis induced by oxidative stress is an early event in the development of atherosclerosis. Several antioxidant enzymes which can cope with oxidative stress are up-regulated by the anti-atherogenic laminar blood flow often seen in straight or unbranched regions of blood vessels. However, the molecular mechanism responsible for flow-induced beneficial effects is incompletely understood.
View Article and Find Full Text PDFThe earliest atherosclerotic lesions preferentially develop in arterial regions experienced disturbed blood flow, which induces endothelial expression of pro-atherogenic genes and the subsequent endothelial dysfunction. Our previous study has demonstrated an up-regulation of DNA methyltransferase 1 (DNMT1) and a global hypermethylation in vascular endothelium subjected to disturbed flow. Here, we determined that DNMT1-specific inhibition in arterial wall ameliorates the disturbed flow-induced atherosclerosis through, at least in part, targeting cell cycle regulator cyclin A and connective tissue growth factor (CTGF).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2017
Vascular endothelial cells (ECs) at arterial branches and curvatures experience disturbed blood flow and induce a quiescent-to-activated phenotypic transition of the adjacent smooth muscle cells (SMCs) and a subsequent smooth muscle hyperplasia. However, the mechanism underlying the flow pattern-specific initiation of EC-to-SMC signaling remains elusive. Our previous study demonstrated that endothelial microRNA-126-3p (miR-126-3p) acts as a key intercellular molecule to increase turnover of the recipient SMCs, and that its release is reduced by atheroprotective laminar shear (12 dynes/cm) to ECs.
View Article and Find Full Text PDF