Microneedle patches can penetrate the myocardium to facilitate integration with cardiac tissue, offering a promising approach for myocardial infarction (MI) repair. However, their clinical translation has been hindered by insufficient fixation stability during cardiac contractions and mismatch with myocardial anisotropy. To address these challenges, a bioinspired three-dimensional cardiac patch integrating barbed microneedles and an anisotropic lightweight mesh was designed.
View Article and Find Full Text PDFThe involvement of gut microbiota in calcific aortic valve disease (CAVD) pathogenesis remains underexplored. Here, we provide evidence for a strong association between the gut microbiota and CAVD development. ApoE mice were stratified into easy- and difficult- to calcify groups using neural network and cluster analyses, and subsequent faecal transplantation and dirty cage sharing experiments demonstrated that the microbiota from difficult-to-calcify mice significantly ameliorated CAVD.
View Article and Find Full Text PDFElectrochemiluminescence (ECL) immunoassays based on tris(bipyridine)ruthenium [Ru(bpy) ] is the luminophore representing the most advanced and widely adopted approach in the field of in vitro diagnostics (IVD). However, the scarcity of potential-resolved ECL promoters for Ru(bpy) markedly limits its application in clinical diagnostics. Here, we report the first application of cobalt single-atom catalysts (SACs) designed via density functional theory (DFT) calculations to boost the multi-signal ECL of Ru(bpy) .
View Article and Find Full Text PDFCardiovascular disease remains one of the leading causes of mortality worldwide, underscoring the urgent need for advanced vascular graft materials. In this study, a small-diameter (inner diameter = 6 mm) dual-network hydrogel vascular graft composed of gelatin and sodium alginate was developed to mimic the native vascular intima. By adjusting the ratio of covalent and ionic cross-linking, the hydrogel containing 15 wt% gelatin exhibited balanced mechanical properties, including suitable tensile strength and elasticity.
View Article and Find Full Text PDFThe influx and retention of the low-density lipoproteins (LDLs) in the subendothelial space are one of the early events of atherosclerosis. Initially, LDLs must traverse the endothelial glycocalyx, which is increasingly recognized for its critical role in preventing LDL penetration. However, the precise substructure of the glycocalyx and its working mechanism are still unknown.
View Article and Find Full Text PDFTo overcome the limitations of conventional oral drugs and nanocarrier-dependent delivery systems in atherosclerosis (AS) therapy, our work proposes an "integration of Chinese and Western medicine" approach to develop a new biomimetic traditional Chinese and Western medicine components coassembled nanoparticles (NPs), termed as MMVs/RPNPs, for targeted AS therapy. In this work, we demonstrated that ginsenoside Rb1 can coassemble with probucol without excipients to form stable carrier-free NPs, termed RPNPs. To impart the specific targeting property to atherosclerotic sites, macrophage microvesicles (MMVs) were utilized to coat the RPNPs to obtain the MMVs/RPNPs.
View Article and Find Full Text PDFThis study leverages the unique advantages of polyprodrug systems and biomimetic technology to develop a novel biomimetic nanoformulation, in which neutrophil extracellular vesicles (NEVs) are coated onto reactive oxygen species (ROS)-sensitive probucol-based polyprodrug nanoparticles (NPPBNPs). This NEV-camouflaged biomimetic nanoformulation holds significant potential for the effective treatment of cerebral ischemia-reperfusion injury (CIRI), offering multifaceted therapeutic effects, such as ROS elimination, inhibition of oxidative stress-induced neuronal apoptosis, attenuation of glial hyperactivation, and suppression of pro-inflammatory mediator secretion. In a murine CIRI model, NPPBNPs markedly enhanced neuronal viability, ameliorated the ischemic penumbra, restored behavioral functions, and exhibited an acceptable safety profile.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2025
Cerebral ischemia-reperfusion injury (CIRI), a critical complication arising from the recanalization of blood flow to the ischemic region of the brain following an ischemic stroke, poses significant challenges in clinical management due to the lack of efficacious therapeutic interventions. This condition markedly impacts the patient prognosis and quality of life. Herein, we developed a carrier-free triple-drug co-assembled nanoformulation, designated as SRPNNPs, to achieve safe and efficient treatment of CIRI.
View Article and Find Full Text PDFWith the global aging population, the incidence of aging-related diseases such as Alzheimer's disease (AD) and atherosclerosis (AS) is increasing. AS has also been identified as a key risk factor for AD. However, the conjoint molecular mechanisms driving these diseases remain unclear.
View Article and Find Full Text PDFBlood vessels are hierarchical microchannels that transport nutrients and oxygen to different tissues and organs, while also eliminating metabolic waste from the body. Disorders of the vascular system impact both physiological and pathological processes. Conventional animal vascular models are complex, high-cost, time-consuming, and low-validity, which have limited the exploration of effective in vitro vascular microsystems.
View Article and Find Full Text PDFAtherosclerosis (AS) is a disease characterized by focal cholesterol accumulation and insoluble inflammation in arterial intima, leading to the formation of an atherosclerotic plaque consisting of lipids, cells, and fibrous matrix. The presence of plaque can restrict or obstruct blood flow, resulting in arterial stenosis and local mechanical microenvironment changes including flow shear stress, vascular matrix stiffness, and plaque structural stress. Neovascularization within the atherosclerotic plaque plays a crucial role in both plaque growth and destabilization, potentially leading to plaque rupture and fatal embolism.
View Article and Find Full Text PDFMechanobiology is essential for cardiovascular structure and function and regulates the normal physiological and pathological processes of the cardiovascular system. Cells in the cardiovascular system are extremely sensitive to their mechanical environment, and once mechanical stimulation is abnormal, the homeostasis mechanism is damaged or lost, leading to the occurrence of pathological remodeling diseases. In the past 20 years, many articles concerning the mechanobiology of cardiovascular homeostasis and remodeling have been published.
View Article and Find Full Text PDFInt J Biol Macromol
June 2025
Effective wound healing requires precise immune regulation, including infection clearance to prevent excessive immune cell activation and polarization of macrophages. Therapeutic systems with combined immunomodulatory effects are crucial. Photodynamic therapy (PDT) is a promising antimicrobial treatment(AIE), with photosensitizers (PSs) playing a central role.
View Article and Find Full Text PDFRegen Biomater
March 2025
Mechanical stimulation plays a crucial role in numerous biological activities, including tissue development, regeneration and remodeling. Understanding how cells respond to their mechanical microenvironment is vital for investigating mechanotransduction with adequate spatial and temporal resolution. Cell force sensing-also known as mechanosensation or mechanotransduction-involves force transmission through the cytoskeleton and mechanochemical signaling.
View Article and Find Full Text PDFTheranostics
April 2025
Cancer is a multifaceted disease characterized by uncontrollable cell growth. To date, various therapies are employed including conventional chemotherapy, surgery, radiotherapy, and immunotherapies. However, these approaches still present significant limitations.
View Article and Find Full Text PDFIn contrast to bioinert metal stents, the degradation of bioresorbable scaffolds (BRS) induces complex mechanical changes and accumulation of degradation products, potentially leading to adverse events following implantation into stenotic arteries. Atherosclerosis (AS) is a typical age-related disease, plaque formation and changes in vascular mechanical properties can significantly affect the process of restenosis and vascular repair after BRS implantation. The aging of vascular smooth muscle cells (VSMCs) is earlier than that of endothelial cells (ECs) and plays a decisive role in the mechanical properties of blood vessels.
View Article and Find Full Text PDFAt present, various diseases seriously threaten human life and health, and the development of nanodrug delivery systems has brought about a turnaround for traditional drug treatments, with nanoparticles being precisely targeted to improve bioavailability. Surface modification of nanoparticles can prolong blood circulation time and enhance targeting ability. The application of cell membrane-coated nanoparticles further improves their biocompatibility and active targeting ability, providing new hope for the treatment of various diseases.
View Article and Find Full Text PDFNon-Hodgkin lymphomas (NHL), including diffuse large B-cell lymphoma (DLBCL), Burkitt lymphoma (BL), and follicular lymphoma (FL), predominantly arise from B cells undergoing germinal center (GC) reactions. The transcriptional repressor B-cell lymphoma 6 (BCL6) is indispensable for GC formation and contributes to lymphomagenesis via its BTB domain-mediated suppression of target genes. Dysregulation of BCL6 underpins the pathogenesis of GC-derived NHL.
View Article and Find Full Text PDFDecellularized artificial blood vessels prepared using physical and chemical methods often exhibit limitations, including poor mechanical performance, susceptibility to inflammation and calcification, and reduced patency. Cross-linking techniques can enhance the stiffness, as well as anti-inflammatory and anti-calcification properties of decellularized vessels. However, conventional cross-linking methods fail to effectively alleviate residual stress post-decellularization, which significantly impacts the patency and vascular remodeling following the implantation of artificial vessels.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Osteoporosis is the most common systemic skeletal disorder, particularly associated with aging and postmenopausal women. With the growing knowledge about the gut-bone axis, the therapeutic strategies for osteoporosis have been shifted toward regulating gut microbiota to promote positive bone metabolism. Although GG (LGG) is widely reported to positively regulate bone metabolism by restoring the dysbiotic microbiome, oral administration is associated with sensitivity to gastric fluid and low bioavailability.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Heterozygotic mutations are responsible for various congenital diseases in the heart, pancreas, liver, and other organs in humans. However, there is lack of an animal that can comprehensively model these diseases since GATA6 is essential for early embryogenesis. Here, we report the establishment of a knockout zebrafish which recapitulates most of the symptoms in patients with mutations, including cardiac outflow tract defects, pancreatic hypoplasia/agenesis, gallbladder agenesis, and various liver diseases.
View Article and Find Full Text PDFViruses can infiltrate the central nervous system and contribute to depression, which may include alterations in dopamine (DA) metabolism triggered by immune responses though the specific mechanisms involved remain unclear. Here, an electrochemical system to realize the real-time dynamic monitoring of DA with high sensitivity is proposed and it is demonstrated that the viral simulator polyinosinic-polycytidylic acid (poly(I:C)) can inhibit the release of DA (from 5.595 to 0.
View Article and Find Full Text PDFAtherosclerosis (AS), an inflammatory disease characterized by lipid accumulation, has a high global incidence and mortality rate. Recently, nanotherapeutic approaches that target pathological sites and improve drug bioavailability and biocompatibility hold great promise for AS treatment. In this study, a biomimetic ROS-responsive hyaluronic acid-based nanomaterial was prepared for targeted anti-AS.
View Article and Find Full Text PDFBioengineering (Basel)
August 2024
(1) Background: In vitro diagnostic (IVD) tests are the main means of obtaining diagnostic information for clinical purposes. The electrochemiluminescence immunoassay (ECLIA) has become an important in vitro diagnostic technique. It has unique advantages and broad market prospects due to its sensitivity, detection limit, detection range and reagent stability.
View Article and Find Full Text PDF