Lithium metal is deemed to be the ultimate anode material for high-energy-density and fast-charging lithium batteries. However, issues of dendritic deposition and frangible solid electrolyte interphases must be resolved for lithium metal anodes. Herein, a hybrid interfacial layer, hierarchical hollow nanospheres assembled from lithiophilic imine-based covalent organic frameworks and built-in Ag sites (Ag@ICOFs), has been applied to regulate the interfacial lithium ion flux and enhance the anode stability for effectively inhibiting dendrite formation.
View Article and Find Full Text PDFJ Am Chem Soc
July 2025
Controlling the rapid, uniform deposition and efficient, stable stripping of Li is crucial for achieving durable high-energy-density Li-metal batteries. Herein, unique biomimetic sandwich-structured tubular ion pump arrays achieved by sandwiching ZnSe nanoparticle tubes between ultrathin N-doped graphene-like layers and vertically aligning on N-doped graphene-Ni foam (NG@ZnSe@NG) are reported, working as a highly efficient and robust Li host for homogeneous and stable Li plating/stripping. After complete lithiation, such a biomimetic tubular ion pump featuring symmetric inner and outer layers with high ion-electron transport rates and a key self-accelerating middle layer is generated, accelerating uniform Li deposition into the interior and efficient stripping of Li from the cavity.
View Article and Find Full Text PDFCovalent organic frameworks (COFs) have gained significant attention as next-generation electrode materials for energy storage, owing to their chemical versatility, ecofriendliness, and cost-effectiveness. However, their practical application in energy storage systems is hindered by challenges such as insufficient exposure of functional groups for sodium storage and poor ion/electron transport kinetics. In this work, we developed an organic-inorganic heterojunction structure by in situ growth of an imine-based COF on the surface of MXene, which was employed as an anode material for sodium-ion batteries.
View Article and Find Full Text PDFLow-cost Fe-based Prussian blue analogues often suffer from capacity degradation, resulting in continuous energy loss, impeding commercialization for practical sodium-ion batteries. The underlying cause of capacity decrease remains mysterious. Herein, we show that irreversible phase transitions, structural degradation, deactivation of surface redox centres, and dissolution of transition metal ions in Prussian blue analogues accumulate continuously during cycling.
View Article and Find Full Text PDFAlthough the catalytic activity is heavily reliant on the electronic structure of the catalyst, understanding the impact of electron spin regulation on electrocatalytic performance is still rarely investigated. This work presents a novel approach involving the single-atom coordination of cobalt (Co) within metalloporphyrin-based three-dimensional covalent organic frameworks (3D-COFs) to facilitate the catalytic conversion for sodium-iodine batteries. The spin state of Co is modulated by altering the oxidation state of the porphyrin-centered Co, achieving optimal catalysis for iodine reduction.
View Article and Find Full Text PDFThis research focused on utilizing banana peel as the primary material for producing mesoporous biomass charcoal through one-step potassium hydroxide activation. Subsequently, the biomass charcoal underwent high-temperature calcination with varying impregnation ratios of KOH : BC for different durations in tubular furnaces set at different temperatures. The resultant biomass charcoal was then subjected to hydrothermal treatment with FeCl·6HO to produce biochar/iron oxide composites.
View Article and Find Full Text PDFMaterials (Basel)
February 2024
The aminated sodium lignosulfonate (AELS) was prepared through a Mannich reaction and characterized via FT-IR, TG, SEM and XPS in this study. Subsequently, the adsorption capacity of AELS for methyl blue (MB) was evaluated under various conditions such as pH, adsorbent dosage, contact time, initial concentration and temperature. The adsorption kinetics, isotherms and thermodynamics of AELS for methyl blue were investigated and analyzed.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2023
Cellulose-based carbon (CBC) is widely known for its porous structure and high specific surface area and is liable to adsorb gas molecules and macromolecular pollutants. However, the application of CBC in gas sensing has been little studied. In this paper, a ZnO/CBC heterojunction was formed by means of simple co-precipitation and high-temperature carbonization.
View Article and Find Full Text PDFGreen organic materials composed of C, H, O, and N elements are receiving more and more attention worldwide. However, the high solubility, poor electrical conductivity, and long activation time limit the development of organic materials in practice. Herein, two stable covalent organic materials with alkynyl linkage between benzene rings and benzothiadiazole groups with different amounts of fluorine atoms modification (defined as BOP-0F and BOP-2F), are designed for lithium-ion batteries.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2023
The poor conductivity of the pristine bulk covalent organic material is the main challenge for its application in energy storage. The mechanism of symmetric alkynyl bonds (C≡C) in covalent organic materials for lithium storage is still rarely reported. Herein, a nanosized (≈80 nm) alkynyl-linked covalent phenanthroline framework (Alkynyl-CPF) is synthesized for the first time to improve the intrinsic charge conductivity and the insolubility of the covalent organic material in lithium-ion batteries.
View Article and Find Full Text PDFNanomaterials (Basel)
April 2023
Germanium-based multi-metallic-oxide materials have advantages of low activation energy, tunable output voltage, and high theoretical capacity. However, they also exhibit unsatisfactory electronic conductivity, sluggish cation kinetics, and severe volume change, resulting in inferior long-cycle stability and rate performance in lithium-ion batteries (LIBs). To solve these problems, we synthesize metal-organic frameworks derived from rice-like ZnGeO nanowire bundles as the anode of LIBs via a microwave-assisted hydrothermal method, minimizing the particle size and enlarging the cation's transmission channels, as well as, enhancing the electronic conductivity of the materials.
View Article and Find Full Text PDFLangmuir
October 2022
As an effective non-noble, molybdenum carbide (MoC: MoC or MoC) has attracted extensive attention and is regarded as a promising research area in the near future owing to its good biocompatibility, high stability, band gap adjustability, rich valence states, and excellent catalytic activity. This Perspective summarizes the recent progress and achievements for the molybdenum carbide-based catalysts. First, the crystal and band structures of molybdenum carbides are generally presented.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2022
The rechargeable lithium/sodium-iodine battery (Li/Na-I ) is a promising candidate for meeting the growing energy demand. Herein, a flexible hydrogen-bonded organic framework (HOF) linked to the Ti C T MXene complex (HOF@Ti C T ) has been presented for iodine loading. HOF is self-assembled by organic monomers through hydrogen bonding interactions between each monomer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2022
The high solubility of the small organic molecule materials in organic electrolytes hinders their development in rechargeable batteries. Hence, this work designs an ultrarobust hydrogen-bonded organic-inorganic hybrid material: the small organic unit of the 1,3,6,8-tetrakis (p-benzoic acid) pyrene (TBAP) molecule connected with the hydroxylated TiCT MXene through hydrogen bonds between the terminal groups of -COOH and -OH. The robust and elastic hydrogen bonds can empower the TBAP, despite being a low-molecule organic chemical, with unusually low solubility in organic electrolytes and thermal stability.
View Article and Find Full Text PDFCovalent organic polymers are attracting more and more attention for energy storage devices due to their lightweight, molecular viable design, stable structure, and environmental benignity. However, low charge-carrier mobility of pristine covalent organic materials is the main drawback for their application in lithium-ion batteries. Herein, a yolk-shell bimetal-modified quinonyl-rich covalent organic material, Co@2AQ-MnO, has been designed and synthesized by loading of petal-like nanosized MnO and coordinating with Co centers, with the aim to improve the charge conductivity of the covalent organic polymer and activate its Li-storage sites.
View Article and Find Full Text PDFUncontrolled lithium dendrite growth and dramatic volume change during cycling have long been severely impeding the practical applications of Li metal as the ultimate anode. In this work, ultrathin MgF nanosheets encapsulated inside nitrogen-doped graphene-like hollow nanospheres (MgF NSs@NGHSs) are ingeniously fabricated to address these problems by a perfect combination of atomic layer deposition and chemical vapor deposition. The uniform and continuous Li-Mg solid-solution inner layer formed by the MgF nanosheets can reduce the nucleation overpotential and induce selective deposition of Li into the cavities of the NGHSs.
View Article and Find Full Text PDFIn this work, hydroxyl-functionalized Mo C-based MXene nanosheets are synthesized by facilely removing the Sn layer of Mo SnC. The hydroxyl-functionalized surface of Mo C suppresses the shuttle effect of lithium polysulfides (LiPSs) through strong interaction between Mo atoms on the MXenes surface and LiPSs. Carbon nanotubes (CNTs) are further introduced into Mo C phase to enlarge the specific surface area of the composite, improve its electronic conductivity, and alleviate the volume change during discharging/charging.
View Article and Find Full Text PDF