J Biomech Eng
September 2025
The beauty of the respiratory system is that it advects air from the mouth/nose to the deep lung, providing a substrate for the gas exchange needed for life. Due to the close interaction of structure and function, the lungs can deform under very small amounts of pressure. In addition, the lung serves as the first barrier of defense against inhaled toxins.
View Article and Find Full Text PDFIntroduction: Cell therapies have revolutionized cancer treatment, with chimeric antigen receptor (CAR) T-cell therapies at the forefront for the treatment of hematological cancers. However, current manufacturing protocols rely on rapid T-cell activation, which can induce exhaustion and undesirable phenotypes, ultimately reducing the efficacy and persistence of CAR T-cells. Given the importance of T-cell activation as a fundamental step to achieve proliferative phenotypes for cell engineering and expansion, approaches are needed to control activation and increase CAR T-cell quality.
View Article and Find Full Text PDFRespiratory conditions represent a significant global healthcare burden impacting hundreds of millions worldwide and necessitating new treatment paradigms. Pulmonary immune engineering using synthetic nanoparticle (NP) platforms can reprogram immune responses for therapeutically beneficial or protective responses directly within the lung tissue. However, effectively localizing these game-changing approaches to the lung remains a significant challenge due to the lung's natural defense.
View Article and Find Full Text PDFACS Appl Eng Mater
December 2024
Modeling aerosol dynamics in the airways is challenging, and most modern personalized tools consider only a single inhalation maneuver through less than 10% of the total lung volume. Here, we present an modeling pipeline to produce a device that preserves patient-specific upper airways while approximating deeper airways, capable of achieving total lung volumes over 7 liters. The modular system, called TIDAL, includes tunable inhalation and exhalation breathing capabilities with resting flow rates up to 30 liters per minute.
View Article and Find Full Text PDFBackground: Current needle-based vaccination for respiratory viruses is ineffective at producing sufficient, long-lasting local immunity in the elderly. Direct pulmonary delivery to the resident local pulmonary immune cells can create long-term mucosal responses. However, criteria for drug vehicle design rules that can overcome age-specific changes in immune cell functions have yet to be established.
View Article and Find Full Text PDFAnnu Rev Biomed Eng
July 2024
There is nothing like a global pandemic to motivate the need for improved respiratory treatments and mucosal vaccines. Stimulated by the COVID-19 pandemic, pulmonary aerosol drug delivery has seen a flourish of activity, building on the prior decades of innovation in particle engineering, inhaler device technologies, and clinical understanding. As such, the field has expanded into new directions and is working toward the efficient delivery of increasingly complex cargos to address a wider range of respiratory diseases.
View Article and Find Full Text PDFCurr Opin Biotechnol
April 2024
Autoimmune diseases are caused by malfunctions of the immune system and generally impact women at twice the frequency of men. Many of the most serious autoimmune diseases are accompanied by a dysregulation of T-cell phenotype, both regarding the ratio of CD4+ to CD8+ T-cells and proinflammatory versus regulatory phenotypes. Biomaterials, in the form of particles and hydrogels, have shown promise in ameliorating this dysregulation both in vivo and ex vivo.
View Article and Find Full Text PDFMacrophages are phagocytic innate immune cells capable of phenotypical switching in response to the local microenvironment. Studies often use either primary macrophages or immortalized cell lines for hypothesis testing, therapeutic assessment, and biomaterial evaluation without carefully considering the potential effects of cell source and tissue of origin, which strongly influence macrophage response. Surprisingly, limited information is available about how, under similar stimuli, immortalized cell lines and primary cells respond in both phenotypical and functional changes.
View Article and Find Full Text PDFComput Chem Eng
November 2023
Delivery of aerosols to the lung can treat various lung diseases. However, the conducting airways are coated by a protective mucus layer with complex properties that make this form of delivery difficult. Mucus is a non-Newtonian fluid and is cleared from the lungs over time by ciliated cells.
View Article and Find Full Text PDFFront Chem Eng
January 2023
Nanoparticle evaluation within the pulmonary airspace has increasingly important implications for human health, with growing interest from drug delivery, environmental, and toxicology fields. While there have been widespread investigations of nanoparticle physiochemical properties following many routes of administration, nanoparticle behavior at the air-liquid interface (ALI) is less well-characterized. In this work, we fabricate two formulations of poly(ethylene)-glycol diacrylate (PEGDA)-based model nanoparticles to establish an workflow allowing evaluation of nanoparticle charge effects at the ALI.
View Article and Find Full Text PDFChronic respiratory diseases and infections are among the largest contributors to death globally, many of which still have no cure, including chronic obstructive pulmonary disorder, idiopathic pulmonary fibrosis, and respiratory syncytial virus among others. Pulmonary therapeutics afford untapped potential for treating lung infection and disease through direct delivery to the site of action. However, the ability to innovate new therapeutic paradigms for respiratory diseases will rely on modeling the human lung microenvironment and including key cellular interactions that drive disease.
View Article and Find Full Text PDFAdoptive T-cell therapies (ATCTs) are increasingly important for the treatment of cancer, where patient immune cells are engineered to target and eradicate diseased cells. The biomanufacturing of ATCTs involves a series of time-intensive, lab-scale steps, including isolation, activation, genetic modification, and expansion of a patient's T-cells prior to achieving a final product. Innovative modular technologies are needed to produce cell therapies at improved scale and enhanced efficacy.
View Article and Find Full Text PDFThe airway of pediatric patients' changes through development, presenting a challenge in developing pediatric-specific aerosol therapeutics. Our work aims to quantify geometric variations and aerosol deposition patterns during upper airway development in subjects between 3.5 months-6.
View Article and Find Full Text PDFEnzymatically degradable peptides are commonly used as linkers within hydrogels for biological applications; however, controlling the degradation of these engineered peptides with different contexts and cell types can prove challenging. In this work, we systematically examined the substitution of d-amino acids (D-AAs) for different l-amino acids in a peptide sequence commonly utilized in enzymatically degradable hydrogels (VPMS↓MRGG) to create peptide linkers with a range of different degradation times, in solution and in hydrogels, and investigated the cytocompatibility of these materials. We found that increasing the number of D-AA substitutions increased the resistance to enzymatic degradation both for free peptide and peptide-linked hydrogels; yet, this trend also was accompanied by increased cytotoxicity in cell culture.
View Article and Find Full Text PDFAerosolization of immunotherapies poses incredible potential for manipulating the local mucosal-specific microenvironment, engaging specialized pulmonary cellular defenders, and accessing mucosal associated lymphoid tissue to redirect systemic adaptive and memory responses. In this review, we breakdown key inhalable immunoengineering strategies for chronic, genetic, and infection-based inflammatory pulmonary disorders, encompassing the historic use of immunomodulatory agents, the transition to biological inspired or derived treatments, and novel approaches of complexing these materials into drug delivery vehicles for enhanced release outcomes. Alongside a brief description of key immune targets, fundamentals of aerosol drug delivery, and preclinical pulmonary models for immune response, we survey recent advances of inhaled immunotherapy platforms, ranging from small molecules and biologics to particulates and cell therapies, as well as prophylactic vaccines.
View Article and Find Full Text PDFDrug Deliv Transl Res
July 2023
Despite recent clinical successes of chimeric antigen receptor T cell therapies in treating liquid cancers, many lingering challenges stand in the way of therapeutic translation to broader types of malignancies. Macrophages have been proposed as alternatives to T cells given macrophages' advantages in promoting tumor infiltration, acquiring diverse antigens, and possessing the ability to continuously stimulate adaptive responses. However, the poor survival of macrophages upon transplantation in addition to transient anti-tumor phenotypical states have been major obstacles standing in the way of macrophage-based cell therapies.
View Article and Find Full Text PDFJ Nanobiotechnology
February 2023
The adoption of pulmonary vaccines to advantageously provide superior local mucosal protection against aerosolized pathogens has been faced with numerous logistical and practical challenges. One of these persistent challenges is the lack of effective vaccine adjuvants that could be well tolerated through the inhaled route of administration. Despite its widespread use as a vaccine adjuvant, aluminum salts (alum) are not well tolerated in the lung.
View Article and Find Full Text PDFThis study focuses on the transport, deposition, and triggered immune response of intranasal vaccine droplets to the angiotensin-converting-enzyme-2-rich region, i.e., the olfactory region (OR), in the nasal cavity of a 6-year-old female to possibly prevent corona virus disease 19 (COVID-19).
View Article and Find Full Text PDFThis study focuses on the transport, deposition, and triggered immune response of intranasal vaccine droplets to the Angiotensin-converting enzyme 2-rich region (i.e., the olfactory region (OR)) in the nasal cavity of a 6-year-old female to possibly prevent COVID-19.
View Article and Find Full Text PDFThe upper airways of children undergo developmental changes around age 6, yielding differences between adult and pediatric anatomies. These differences include the cricoid ring area shape, the location of narrowest constriction, and the angle of the epiglottis, all of which are expected to alter local fluid dynamic profiles and subsequent upper airway deposition and downstream aerosol delivery of inhaled therapeutics. In this work, we quantify "pediatric"-like and "adult"-like geometric and fluid dynamic features of two computed tomography (CT)-scan derived models of 6-year-old upper airways in healthy subjects and compare to an idealized model.
View Article and Find Full Text PDFAdv Nanobiomed Res
May 2022
Macrophages, a class of tissue resident innate immune cells, are responsible for sequestering foreign objects through the process of phagocytosis, making them a promising target for immune-modulation via particulate engineering. Here, we report that nanoparticle (NP) dosing and cellular internalization via phagocytosis significantly enhances survival of cultures of primary bone marrow-derived, alveolar, and peritoneal macrophages over particle-free controls. The enhanced survival is attributed to suppression of caspase-dependent apoptosis and is linked to phagocytosis and lysosomal signaling.
View Article and Find Full Text PDFAdditive manufacturing affords precise control over geometries with high degrees of complexity and pre-defined structure. Lattices are one class of additive-only structures which have great potential in directing transport phenomena because they are highly ordered, scalable, and modular. However, a comprehensive description of how these structures scale and interact in heterogeneous systems is still undetermined.
View Article and Find Full Text PDF