Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanoparticle evaluation within the pulmonary airspace has increasingly important implications for human health, with growing interest from drug delivery, environmental, and toxicology fields. While there have been widespread investigations of nanoparticle physiochemical properties following many routes of administration, nanoparticle behavior at the air-liquid interface (ALI) is less well-characterized. In this work, we fabricate two formulations of poly(ethylene)-glycol diacrylate (PEGDA)-based model nanoparticles to establish an workflow allowing evaluation of nanoparticle charge effects at the ALI. Both cationic and anionic PEGDA formulations were synthesized with similar hydrodynamic diameters around ~225 nm and low polydispersity, with expected surface charges corresponding with the respective functional co-monomer. We find that both formulations are readily nebulized from an aqueous suspension in a commercial Aeroneb Lab Nebulizer, but the aqueous delivery solution served to slightly increase the overall hydrodynamic and geometric size of the cationic particle formulation. However, nanoparticle loading at 50 μg/ml of either formulation did not influence the resultant aerosol diameter from the nebulizer. To assess aerosol delivery , we designed a 3D printed adapter capable of ensuring aerosol delivery to transwell 24-well culture plates. Nanoparticle uptake by macrophages was compared between traditional cell culture techniques and that of ALI-cultured macrophages following aerosol delivery. Cell viability was unaffected by nanoparticle delivery using either method. However, only traditional cell culture methods demonstrated significant uptake that was dependent on the nanoparticle surface charge. Concurrently, ALI culture resulted in lower metabolic activity of macrophages than those in traditional cell culture, leading to lower overall nanoparticle uptake at ALI. Overall, this work demonstrates that base-material similarities between both particle formulations provide an expected consistency in aerosol delivery regardless of the nanoparticle surface charge and provides an important workflow that enables a holistic evaluation of aerosolizable nanoparticles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586456PMC
http://dx.doi.org/10.3389/fceng.2022.1086031DOI Listing

Publication Analysis

Top Keywords

aerosol delivery
16
traditional cell
12
cell culture
12
nanoparticle
10
air-liquid interface
8
nanoparticle uptake
8
nanoparticle surface
8
surface charge
8
delivery
7
aerosol
5

Similar Publications

Heating Coil Corrosion by E-Liquid Containing Nicotine Lactate Salt and In Vitro and In Vivo Evaluation of Nickel Leachate in E-Liquid and E-Cigarette Aerosol.

Chem Res Toxicol

September 2025

R&D Department, IMiracle (Shenzhen) Innovation Technology Co., Ltd., Junction of Menghai Boulevard and Binhai Avenue in Qianhai Shenzhen Hong Kong Cooperation Zone, Shenzhen 518100, China.

Nicotine lactate salt is one of the commonly used nicotine salts in electronic cigarette (e-cigarette) formulations, including products that have received Marketing Granted Orders through the FDA's Premarket Tobacco Product Application (PMTA) evaluation in the US. However, full-life cycle evaluation on nicotine lactate salt remains limited, especially its leaching reactions with heating elements and the potential to influence aerosol composition. This study investigated the chemical effects of nicotine lactate salt on e-cigarette heating coils and potential toxicological consequences of nickel (Ni) leachates using in vitro cells and animal models.

View Article and Find Full Text PDF

Difference in Exposure and Tolerability when Comparing Intratracheal Instillation with Inhaled Delivery.

J Aerosol Med Pulm Drug Deliv

September 2025

Drug Metabolism and Pharmacokinetics, Research and Early Development Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.

To investigate the impact of two different routes of administration on the lung and systemic exposure of drugs designed for local delivery to the lung. In our comparative studies, similar lung doses of three different drugs were administered to rodents by both intratracheal instillation and inhaled delivery. An obvious but unexpected difference in the exposure was observed.

View Article and Find Full Text PDF

Histone H3K4me1 and H3K27me3 modifications play a crucial role in regulating neuronal development by maintaining the balance between active and inactive genes during neurogenesis. Prenatal exposure to electronic-cigarette (e-cig) aerosol has been shown to alter neuronal differentiation in a neuron type-specific manner. However, it remains unclear whether e-cig aerosol exposure affects gene expression by altering H3K4me1 and H3K27me3 modifications.

View Article and Find Full Text PDF

Background: E-cigarette or vaping product use-associated Lung Injury (EVALI) has become a public health concern since 2019, with vitamin E acetate (VEA) identified as a potential causative agent. While previous studies have used whole-body VEA aerosol exposure or intratracheal instillation models, these approaches may introduce confounding exposure routes or do not fully reflect real-world vaping conditions. To better understand VEA-induced EVALI, there remains a need for an animal model that isolates airway exposure and closely mimics human vaping behaviour.

View Article and Find Full Text PDF

Models of Surfactant Replacement Therapy in Neonatal Lungs.

J Biomech Eng

September 2025

Department of Biomedical Engineering, The University of Akron, 244 Sumner Street Akron, OH 44325.

The lungs play a critical role in gas exchange and overall respiratory functions, relying on a delicate balance of pulmonary mechanics and surfactant homeostasis. Surfactant replacement therapy (SRT) is a life-saving intervention for conditions such as neonatal respiratory distress syndrome (NRDS), where surfactant deficiency impairs alveolar stability and normal gas exchange. To improve treatment strategies of lung disorders such as NRDS, researchers have developed a variety of computational, benchtop, and animal models to investigate surfactant transport and drug delivery in the lungs.

View Article and Find Full Text PDF