98%
921
2 minutes
20
The upper airways of children undergo developmental changes around age 6, yielding differences between adult and pediatric anatomies. These differences include the cricoid ring area shape, the location of narrowest constriction, and the angle of the epiglottis, all of which are expected to alter local fluid dynamic profiles and subsequent upper airway deposition and downstream aerosol delivery of inhaled therapeutics. In this work, we quantify "pediatric"-like and "adult"-like geometric and fluid dynamic features of two computed tomography (CT)-scan derived models of 6-year-old upper airways in healthy subjects and compare to an idealized model. The two CT-scan models had a mixture of "adult"- and "pediatric"-like anatomic features, with Subject B exhibiting more "pediatric"-like features than Subject A, while the idealized model exhibited entirely "adult"-like features. By computational fluid-particle dynamics, these differences in anatomical features yielded distinct local fluid profiles with altered aerosol deposition between models. Notably, the idealized model better predicted deposition characteristics of Subject A, the more "adult"-like model, including the relationship between the impaction parameter, dQ and the fraction of deposition across a range of flow rates and particle diameters, as well as deposition of an approximate pharmaceutical particle size distribution model. Our results with even this limited dataset suggest that there are key personalized metrics that are influenced by anatomical development, which should be considered when developing pediatric inhalable therapeutics. Quantifying anatomical development and correlating to aerosol deposition has the potential for high-throughput developmental characterization and informing desired aerosol characteristics for pediatric applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10167792 | PMC |
http://dx.doi.org/10.1016/j.compbiomed.2022.106058 | DOI Listing |
J Hazard Mater
September 2025
Private Researcher, Kupiškis, Lithuania.
An integrated framework is introduced and applied to assess the health impact of airborne pollution with greater physiological relevance, moving beyond conventional exposure metrics. Measured particle number size distribution data was integrated with a regional respiratory tract deposition fractions to estimate total and alveolar deposited particle surface area concentrations. Land use regression modeling, combined with randomized commuting patterns, enabled the evaluation of city-specific alveolar surface area deposition doses, providing new insight into localized average exposure and its implications for public health.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
TCM Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0US, United Kingdom.
Intuitively, slow droplets stick to a surface and faster droplets splash or bounce. However, recent work suggests that on nonwetting surfaces, whether microdroplets stick or bounce depends only on their size and fluid properties, but not on the incoming velocity. Here, we show using theory and experiments that even poorly wetting surfaces have a velocity-dependent criterion for bouncing of aqueous droplets, which is as high as 6 m/s for diameters of 30 to 50 [Formula: see text]m on hydrophobic surfaces such as Teflon.
View Article and Find Full Text PDFMicrob Ecol
September 2025
Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, 44115, USA.
Stemflow, the concentrated fraction of rainfall that drains down tree trunks, can translocate canopy biota to the forest floor, but its eukaryotic composition remains uncharacterized via eDNA methods. We collected stemflow from 18 Fagus grandifolia (American beech) trees during ten storms in northeastern Ohio (USA) and analyzed 18S rRNA eDNA to resolve transported microbial-eukaryote communities. Over 12 million reads (83 samples) revealed 920 zero-radius OTUs spanning fungi, algae, protists, and metazoans.
View Article and Find Full Text PDFJ Biomech Eng
September 2025
Department of Biomedical Engineering, The University of Akron, 244 Sumner Street Akron, OH 44325.
The lungs play a critical role in gas exchange and overall respiratory functions, relying on a delicate balance of pulmonary mechanics and surfactant homeostasis. Surfactant replacement therapy (SRT) is a life-saving intervention for conditions such as neonatal respiratory distress syndrome (NRDS), where surfactant deficiency impairs alveolar stability and normal gas exchange. To improve treatment strategies of lung disorders such as NRDS, researchers have developed a variety of computational, benchtop, and animal models to investigate surfactant transport and drug delivery in the lungs.
View Article and Find Full Text PDFJ Asthma
September 2025
Clinical Pharmacy Department, Faculty of Pharmacy, Beni-suef University, Beni-suef, Egypt.
Background: The Global Initiative for Asthma (GINA) recommended using spacers or valved holding chambers to counter the common problems of poor pressurized metered dose inhaler (pMDI) technique. However, many subjects avoid using conventional spacers because they are bulky and inconvenient to carry around in public.
Objective: We aimed to compare the novel, MDI PLUS spacer, with AeroChamber2go™ on their and aerosol performance, as well as their user training requirements.