Publications by authors named "Ian Woodward"

Article Synopsis
  • Aerosol contamination is a significant issue across various sectors, and the study focuses on using 3D-printed open foam-like lattice structures as an efficient solution for filtration.
  • The researchers created and tested four different lattice geometries (Cubic, Kelvin, Octahedron, and Weaire-Phelan) to determine their effectiveness in capturing aerosol particles, finding that filtration performance improves with the specific surface area of the filter design.
  • The study also identified mechanisms of particle deposition and established that 3D-printed lattices can achieve high filtration efficiencies (10-100%) under varying airflow conditions, indicating their potential as customizable and effective aerosol filters while addressing existing production challenges.
View Article and Find Full Text PDF

Modeling aerosol dynamics in the airways is challenging, and most modern personalized tools consider only a single inhalation maneuver through less than 10% of the total lung volume. Here, we present an modeling pipeline to produce a device that preserves patient-specific upper airways while approximating deeper airways, capable of achieving total lung volumes over 7 liters. The modular system, called TIDAL, includes tunable inhalation and exhalation breathing capabilities with resting flow rates up to 30 liters per minute.

View Article and Find Full Text PDF

There is nothing like a global pandemic to motivate the need for improved respiratory treatments and mucosal vaccines. Stimulated by the COVID-19 pandemic, pulmonary aerosol drug delivery has seen a flourish of activity, building on the prior decades of innovation in particle engineering, inhaler device technologies, and clinical understanding. As such, the field has expanded into new directions and is working toward the efficient delivery of increasingly complex cargos to address a wider range of respiratory diseases.

View Article and Find Full Text PDF

Adoptive T-cell therapies (ATCTs) are increasingly important for the treatment of cancer, where patient immune cells are engineered to target and eradicate diseased cells. The biomanufacturing of ATCTs involves a series of time-intensive, lab-scale steps, including isolation, activation, genetic modification, and expansion of a patient's T-cells prior to achieving a final product. Innovative modular technologies are needed to produce cell therapies at improved scale and enhanced efficacy.

View Article and Find Full Text PDF

The airway of pediatric patients' changes through development, presenting a challenge in developing pediatric-specific aerosol therapeutics. Our work aims to quantify geometric variations and aerosol deposition patterns during upper airway development in subjects between 3.5 months-6.

View Article and Find Full Text PDF
Article Synopsis
  • Detecting changes in biodiversity is complex due to its multifaceted nature and biases in temporal data.
  • A study analyzed population trends of native breeding birds in the UK and EU, revealing significant declines in bird abundance, particularly among smaller and more common species, while rarer and larger birds showed better stability.
  • Findings indicate that population trends are linked to body mass, climate suitability, migration strategies, and dietary niches, emphasizing the need for careful interpretation of biodiversity metrics as they can yield different insights.
View Article and Find Full Text PDF

The upper airways of children undergo developmental changes around age 6, yielding differences between adult and pediatric anatomies. These differences include the cricoid ring area shape, the location of narrowest constriction, and the angle of the epiglottis, all of which are expected to alter local fluid dynamic profiles and subsequent upper airway deposition and downstream aerosol delivery of inhaled therapeutics. In this work, we quantify "pediatric"-like and "adult"-like geometric and fluid dynamic features of two computed tomography (CT)-scan derived models of 6-year-old upper airways in healthy subjects and compare to an idealized model.

View Article and Find Full Text PDF

Additive manufacturing affords precise control over geometries with high degrees of complexity and pre-defined structure. Lattices are one class of additive-only structures which have great potential in directing transport phenomena because they are highly ordered, scalable, and modular. However, a comprehensive description of how these structures scale and interact in heterogeneous systems is still undetermined.

View Article and Find Full Text PDF

Additively manufactured lattices are emerging as promising candidates for structural, thermal, chemical, and biological applications. However, achieving a satisfactory prototype or final part with this level of complexity requires synthesis of disparate knowledge from the distinctly digital and physical processing stages. This work proposes an integrated framework for processing self-supporting, open lattice structures that do not require supports and facilitate material removal in post-processing steps.

View Article and Find Full Text PDF

Current facemask research focuses on material characterization and efficiency; however, facemasks are often not tested such that aerosol distributions are evaluated from the gaps in the sides, bottom, and nose areas. Poor evaluation methods could lead to misinformation on optimal facemasks use; a high-throughput, reproducible method which illuminates the issue of fit influencing aerosol transmission is needed. To this end, we have created an in vitro model to quantify particle transmission by mimicking exhalation aerosols in a 3D printed face-nose-mouth replica via a nebulizer and quantifying particle counts using a hand-held particle counter.

View Article and Find Full Text PDF

Background: Temperature is one of the most important abiotic factors limiting plant growth and productivity. Many plants exhibit cold acclimation to prepare for the likelihood of freezing as temperatures decrease towards 0 °C. The physiological mechanisms associated with enabling increased tolerance to sub-zero temperatures vary between species and genotypes.

View Article and Find Full Text PDF

The maximum photosynthetic carboxylation rate (V ) is an influential plant trait that has multiple scaling hypotheses, which is a source of uncertainty in predictive understanding of global gross primary production (GPP). Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental filtering, and plant plasticity) with nine specific implementations were used to predict global V distributions and their impact on global GPP in the Sheffield Dynamic Global Vegetation Model (SDGVM). Global GPP varied from 108.

View Article and Find Full Text PDF

The threat associated with chemical warfare agents (CWAs) motivates the development of new materials to provide enhanced protection with a reduced burden. Metal-organic frame-works (MOFs) have recently been shown as highly effective catalysts for detoxifying CWAs, but challenges still remain for integrating MOFs into functional filter media and/or protective garments. Herein, we report a series of MOF-nanofiber kebab structures for fast degradation of CWAs.

View Article and Find Full Text PDF

Stomatal functioning regulates the fluxes of CO and water vapor between vegetation and atmosphere and thereby influences plant adaptation to their habitats. Stomatal traits are controlled by external environmental and internal cellular signaling. The objective of this study was to quantify the effects of CO enrichment (CE) on stomatal density (SD)-related properties, guard cell length (GCL) and carbon isotope ratio (δ C) of a range of Arabidopsis thaliana ecotypes originating from a wide altitudinal range [50-1260 m above sea level (asl)], and grown at 400 and 800 ppm [CO ], and thereby elucidate the possible adaptation and acclimation responses controlling stomatal traits and water use efficiency (WUE).

View Article and Find Full Text PDF

Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (V cmax) and the maximum rate of electron transport (J max). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales.

View Article and Find Full Text PDF

Global climate change is expected to shift regional rainfall patterns, influencing species distributions where they depend on water availability. Comparative studies have demonstrated that C4 grasses inhabit drier habitats than C3 relatives, but that both C3 and C4 photosynthesis are susceptible to drought. However, C4 plants may show advantages in hydraulic performance in dry environments.

View Article and Find Full Text PDF

Future climate change and increasing atmospheric CO2 are expected to cause major changes in vegetation structure and function over large fractions of the global land surface. Seven global vegetation models are used to analyze possible responses to future climate simulated by a range of general circulation models run under all four representative concentration pathway scenarios of changing concentrations of greenhouse gases. All 110 simulations predict an increase in global vegetation carbon to 2100, but with substantial variation between vegetation models.

View Article and Find Full Text PDF

Small-seeded plant species are often reported to have high relative growth rate or RGR. However, because RGR declines as plants grow larger, small-seeded species could achieve higher RGR simply by virtue of their small size. In contrast, size-standardized growth rate or SGR factors out these size effects.

View Article and Find Full Text PDF

Understanding variation of plant nutrients is largely limited to nitrogen and to a lesser extent phosphorus. Here we analyse patterns of variation in 11 elements (nitrogen/phosphorus/potassium/calcium/magnesium/sulphur/silicon/iron/sodium/manganese/aluminium) in leaves of 1900 plant species across China. The concentrations of these elements show significant latitudinal and longitudinal trends, driven by significant influences of climate, soil and plant functional type.

View Article and Find Full Text PDF

• Theoretically, communities at or near their equilibrium species number resist entry of new species. Such 'biotic resistance' recently has been questioned because of successful entry of alien species into diverse natural communities. • Data on 10,409 naturalizations of 5350 plant species over 16 sites dispersed globally show exponential distributions both for species over sites and for sites over number of species shared.

View Article and Find Full Text PDF