Plant Cell Rep
June 2025
Species in the Plantago genus are emerging model organisms to multiple research disciplines. The genus Plantago has long been recognized for its significance in various research fields, yet it remains underutilized as a model organism in scientific studies. Several Plantago species possess unique traits, including easily accessible vascular tissues, medicinal properties, gynodieocity, and remarkable adaptability to diverse environmental conditions.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
J3 regulates flowering by antagonising AFP2 and protecting CO stability in Arabidopsis.
View Article and Find Full Text PDFIn this study, we demonstrated that a regulatory module consisting of the SEVEN IN ABSENTIA (SINA) ubiquitin ligase SINA3 and the WUSCHEL homeobox-containing (WOX) transcription factor WOX14 fine-tunes tomato (Solanum lycopersicum) growth and development. Overexpression of SINA3 in tomato (SINA3-OX) resulted in dwarfism due to shortened internodes with smaller cells. SINA3 regulates WOX14 levels through ubiquitin-independent proteasome-mediated degradation, wherein SINA3 acts as a linker between WOX14 and the proteasome subunits REGULATORY PARTICLE NON-ATPASEs 9 and 13 (RPN9 and RPN13).
View Article and Find Full Text PDFMineral nutrients are essential for plant growth, development and crop yield. Under mineral deficient conditions, plants rely on a sophisticated network of signalling pathways to coordinate their molecular, physiological, and morphological responses. Recent research has shown that long-distance signalling pathways play a pivotal role in maintaining mineral homeostasis and optimising growth.
View Article and Find Full Text PDFPlant Cell Environ
June 2025
Mineral deficiency is a major problem in agriculture. Plant adaption to low mineral environments involves signaling between shoots and roots, via the food transport cells, the sieve elements. However, due to the sequestered position of the sieve elements in the vascular bundles, identifying shoot-to-root mobile signals is challenging.
View Article and Find Full Text PDFThe life cycle of land plants is characterized by alternating generations of sexual gametophytes and asexual sporophytes. Unlike seed plants, seed-free vascular plants, including ferns, initiate and maintain pluripotent meristems during their gametophyte phase to sustain body expansion and drive the formation of sexual organs for reproduction. This review summarizes meristem development among various fern species during the gametophyte phase, focusing on the cellular basis of meristem initiation, proliferation, and termination.
View Article and Find Full Text PDFNitrogen (N) and phosphorus (P) are essential mineral macronutrients critical for plant structure and function. Both contribute to processes ranging from cellular integrity to signal transduction. Since plants require these nutrients in high concentrations, replenishing them in soil often involves chemical fertilizers.
View Article and Find Full Text PDFPlant Cell Environ
March 2025
A fascinating feature of land plants is their ability to continually initiate new tissues and organs throughout their lifespan, driven by a pool of pluripotent stem cells located in meristems. In seed plants, various types of meristems are initiated and maintained during the sporophyte generation, while their gametophytes lack meristems and rely on sporophyte tissues for growth. In contrast, seed-free vascular plants, such as ferns, develop meristems during both the sporophyte and gametophyte generations, allowing for the independent growth of both generations.
View Article and Find Full Text PDFHeredity (Edinb)
December 2024
Adv Sci (Weinh)
October 2024
In plants, vegetative growth is controlled by synergistic and/or antagonistic effects of many regulatory factors. Here, the authors demonstrate that the ubiquitin ligase seven in absentia1 (SINA1) mammalian BTF2-like transcription factors, Drosophila synapse-associated proteins, and yeast DOS2-like proteins (BSD1) function as a regulatory module to control vegetative growth in tomato via regulation of the production of plant growth hormone gibberellin (GA). SINA1 negatively regulates the protein level of BSD1 through ubiquitin-proteasome-mediated degradation, and the transgenic tomato over-expressing SINA1 (SINA1-OX) resembles the dwarfism phenotype of the BSD1-knockout (BSD1-KO) tomato plant.
View Article and Find Full Text PDFPlants (Basel)
July 2023
Plant signal transduction occurs in response to nutrient element deficiency in plant vascular tissue. Recent works have shown that the vascular tissue is a central regulator in plant growth and development by transporting both essential nutritional and long-distance signaling molecules between different parts of the plant's tissues. Split-root and grafting studies have deciphered the importance of plants' shoots in receiving root-derived nutrient starvation signals from the roots.
View Article and Find Full Text PDFUnlabelled: Phosphorus (P) is one of the important mineral elements required for plant growth and development. However, because of the low mobility in soil, P deficiency has been an important factor limiting soybean production. Here, we identified 14 (phosphate starvation response) genes in soybean genome and verified that two previously unreported members, and , were involved in low-P stress tolerance in soybean.
View Article and Find Full Text PDFSpecies in the genus Plantago have several unique traits that have led to them being adapted as model plants in various fields of study. However, the lack of a genetic manipulation system prevents in-depth investigation of gene function, limiting the versatility of this genus as a model. Here, a transformation protocol is presented for Plantago lanceolata, the most commonly studied Plantago species.
View Article and Find Full Text PDFPlants (Basel)
October 2022
Iron (Fe) deficiency is a global health problem, especially in underdeveloped countries. Biofortification with genetic engineering methods has been used to improve Fe nutrition in a number of crops. Various steps, e.
View Article and Find Full Text PDFPlant Physiol
November 2021
Long-distance mobile mRNAs play key roles in gene regulatory networks that control plant development and stress tolerance. However, the mechanisms underlying species-specific delivery of mRNA still need to be elucidated. Here, the use of grafts involving highly heterozygous apple (Malus) genotypes allowed us to demonstrate that apple (Malus domestica) oligopeptide transporter3 (MdOPT3) mRNA can be transported over a long distance, from the leaf to the root, to regulate iron uptake; however, the mRNA of Arabidopsis (Arabidopsis thaliana) oligopeptide transporter 3 (AtOPT3), the MdOPT3 homolog from A.
View Article and Find Full Text PDFJ Integr Plant Biol
December 2021
Translational control of gene expression, including recruitment of ribosomes to messenger RNA (mRNA), is particularly important during the response to stress. Purification of ribosome-associated mRNAs using translating ribosome affinity purification (TRAP) followed by RNA-sequencing facilitates the study of mRNAs undergoing active transcription and better proxies the translatome, or protein response, to stimuli. To identify plant responses to Magnesium (Mg) deficiency at the translational level, we combined transcriptome and translatome analyses.
View Article and Find Full Text PDFVascular bundles play important roles in transporting nutrients, growth signals, amino acids, and proteins between aerial and underground tissues. In order to understand these sophisticated processes, a comprehensive analysis of the roles of the components located in the vascular tissues is required. A great deal of data has been obtained from proteomic analyses of vascular tissues in plants, which mainly aim to identify the proteins moving through the vascular tissues.
View Article and Find Full Text PDFUnderstanding the physiological mechanisms that control drought tolerance in crop plants is vital for effective breeding. In this study, we characterized drought stress responses in four sorghum cultivars exhibiting differential levels of drought tolerance at pre- and post-anthesis. Greenhouse-grown plants were subjected to two types of drought treatment, water stress (WS) and desiccant-induced water stress (DA), timed to occur at pre- and post-anthesis.
View Article and Find Full Text PDFHydrogen peroxide (HO) is an important signaling molecule and plays key roles in multiple plant physiological processes. The rapid and direct monitoring of HO could improve our understanding of its regulatory mechanisms in plants. In this study, we developed a paper-based analytical device consisting of a disposable nano-gold modified indium tin oxide working electrode to provide a platform for the rapid and direct detection of HO.
View Article and Find Full Text PDFPlants (Basel)
July 2020
Deficiencies in essential mineral nutrients such as nitrogen (N), phosphorus (P), and iron (Fe) severely limit plant growth and crop yield. It has been discovered that both the local sensing system in roots and shoot-to-root systemic signaling via the phloem are involved in the regulation of the adaptive alterations in roots, in response to mineral deficiency. mRNAs are one group of molecules with systemic signaling functions in response to intrinsic and environmental cues; however, the importance of shoot-to-root mobile mRNAs stimulated by low mineral levels is not fully understood.
View Article and Find Full Text PDFLong-distance transport of information molecules in the vascular tissues could play an important role in regulating plant growth and enabling plants to cope with adverse environments. Various molecules, including hormones, proteins, small peptides and small RNAs have been detected in the vascular system and proved to have systemic signaling functions. Sporadic studies have shown that a number of mRNAs produced in the mature leaves leave their origin cells and move to distal tissues to exert important physiological functions.
View Article and Find Full Text PDFMethods Mol Biol
March 2020
Large numbers of mRNAs move in the phloem and some may function as signals to exert important physiological functions in the distal recipient organs. Generating an authentic list of phloem mobile mRNA is a prerequisite for elucidating their physiological functions. Nicotiana benthamiana can be used as a scion to graft on a tomato (Solanum lycopersicum) rootstock.
View Article and Find Full Text PDF