Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mineral nutrients are essential for plant growth, development and crop yield. Under mineral deficient conditions, plants rely on a sophisticated network of signalling pathways to coordinate their molecular, physiological, and morphological responses. Recent research has shown that long-distance signalling pathways play a pivotal role in maintaining mineral homeostasis and optimising growth. This review explores the intricate mechanisms of long-distance signalling under mineral deficiencies, emphasising its importance as a communication network between roots and shoots. Through the vascular tissues, plants transport an array of signalling molecules, including phytohormones, small RNAs, proteins, small peptides, and mobile mRNAs, to mediate systemic responses. Vascular tissues, particularly companion cells, are critical hubs for sensing and relaying mineral deficiency signals, leading to rapid changes in mineral uptake and optimised root morphology. We highlight the roles of key signalling molecules in regulating mineral acquisition and stress adaptation. Advances in molecular tools, including TRAP-Seq, heterografting, and single-cell RNA sequencing, have recently unveiled novel aspects of long-distance signalling and its regulatory components. These insights underscore the essential role of vascular-mediated communication in enabling plants to navigate heterogeneous mineral distribution environments and suggest new avenues for improving crop resilience and mineral use efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12131963PMC
http://dx.doi.org/10.1111/pce.15475DOI Listing

Publication Analysis

Top Keywords

long-distance signalling
12
mineral
10
molecular tools
8
resilience mineral
8
signalling pathways
8
vascular tissues
8
signalling molecules
8
signalling
7
decoding long-distance
4
long-distance communication
4

Similar Publications

Introduction: The local perception of a stimulus such as wounding can trigger plant-wide responses through the propagation of systemic signals including the vascular transport of diverse chemical messengers, the propagation of electrical changes, and even potentially hydraulic waves that rapidly spread throughout the plant body. These systemic signals trigger changes in second messengers such as Ca2+ that then play roles in triggering subsequent molecular responses. Although the glutamate receptor-like (GLR) channels GLR3.

View Article and Find Full Text PDF

Nitrogen-Driven Orchestration of Lateral Root Development: Molecular Mechanisms and Systemic Integration.

Biology (Basel)

August 2025

Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.

N, as plants' most essential nutrient, profoundly shapes root system architecture (RSA), with LRs being preferentially regulated. This review synthesizes the intricate molecular mechanisms underpinning N sensing, signaling, and its integration into developmental pathways governing LR initiation, primordium formation, emergence, and elongation. We delve deeply into the roles of specific transporters (NRT1.

View Article and Find Full Text PDF

Vocal communication is a complex social behavior that entails the integration of auditory perception and vocal production. Both anatomical and functional evidence have implicated the anterior cingulate cortex (ACC), including area 32, in these processes, but the dynamics of neural responses in area 32 during naturalistic vocal interactions remain poorly understood. Here, we addressed this by recording the activity of single area 32 neurons using chronically implanted ultra high density Neuropixels probes in freely moving male common marmosets () engaged in an antiphonal calling paradigm in which they exchanged long-distance "phee" calls with a virtual conspecific.

View Article and Find Full Text PDF

In this paper, a strain-temperature sensor with medium-high stretchability is proposed for aeronautic applications. The elastomer is conceived to be used as a protective cover on a morphing airfoil characterized by high curvatures. The main novelties in design and manufacturing compared to the state of the art are: use of a non-commercial, low-viscosity PDMS crosslinked with TEOS and DBTDL to enable effective graphene dispersion; innovative sensor design featuring an insulating interlayer on the substrate; and presence of micro-voids to enhance adhesion to the substrate.

View Article and Find Full Text PDF

Investigation of Signal Transmission Dynamics in Rulkov Neuronal Networks with Q-Learned Pathways.

Entropy (Basel)

August 2025

Institute of Humanities, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan.

The dynamics of signal transmission in neuronal networks remain incompletely understood. In this study, we propose a novel Rulkov neuronal network model that incorporates Q-learning, a reinforcement learning method, to establish efficient signal transmission pathways. Using a simulated neuronal network, we focused on a key parameter that modulates both the intrinsic dynamics of individual neurons and the input signals received from active neighbors.

View Article and Find Full Text PDF