Publications by authors named "Beiju Huang"

Crystal engineering using passivation to reduce perovskite defects is crucial to improving the quality of perovskite crystals and optoelectronic properties. Because of their unique properties, metal-organic framework materials have been used as an emerging and effective passivator for perovskite materials and optoelectronic devices. This paper focuses on the differences in the optoelectronic properties of zeolite imidazolium ester framework materials (ZIF-11 & ZIF-23) doped with different conjugated ring ligands for perovskite photodetectors.

View Article and Find Full Text PDF

Exosomes are becoming more widely acknowledged as significant circulating indicators for the prognosis and diagnosis of cancer. Circulating exosomes are essential to the development and spread of cancer, according to a growing body of research. Using existing technology, characterizing exosomes is quite difficult.

View Article and Find Full Text PDF

Sensitive, accurate, and straightforward biosensors are pivotal in the battle against Alzheimer's disease, particularly in light of the escalating patient population. These biosensors enable early adjunctive diagnosis, thereby facilitating prompt intervention, alleviating socioeconomic burdens, and preserving individual well-being. In this study, we introduce the development of a highly sensitive add-drop dual-microring resonant microfluidic sensing chip boasting a sensitivity of 188.

View Article and Find Full Text PDF

Silicon photonic-based refractive index sensors are of great value in the detection of gases, biological and chemical substances. Among them, microring resonators are the most promising due to their compact size and narrow Lorentzian-shaped spectrum. The electric field in a subwavelength grating waveguide (SWG) is essentially confined in the low-refractive index dielectric, favoring enhanced analyte-photon interactions, which represents higher sensitivity.

View Article and Find Full Text PDF

A high-efficiency photodetector consisting of colloidal PbS quantum dots (QDs) and single-layer graphene was prepared in this research. In the early stage, PbS QDs were synthesized and characterized, and the results showed that the product conformed with the characteristics of high-quality PbS QDs. Afterwards, the photodetector was derived through steps, including the photolithography and etching of indium tin oxide (ITO) electrodes and the graphene active region, as well as the spin coating and ligand substitution of the PbS QDs.

View Article and Find Full Text PDF
Article Synopsis
  • Two-terminal self-rectifying (SR) synaptic memristors are promising for neuromorphic computing due to their ability to suppress current paths in dense 3D integrated systems.
  • A new SR-synaptic memristor and cross-point array have been developed, showing exceptionally high weight potentiation linearity (0.9997) and capabilities for image contrast enhancement and background filtering.
  • An innovative unsupervised self-organizing map (SOM) neural network achieves high recognition accuracy (0.98) and training efficiency, addressing the challenges faced by SR memristors in traditional artificial neural networks (ANNs) and opening new opportunities for scalable, effective neuromorphic computing.
View Article and Find Full Text PDF

Artificial synapses with the capability of optical sensing and synaptic functions are fundamental components to construct neuromorphic visual systems. However, most reported artificial optical synapses require a combination of optical and electrical stimuli to achieve bidirectional synaptic conductance modulation, leading to an increase in the processing time and system complexity. Here, an all-optically controlled artificial synapse based on the graphene/titanium dioxide (TiO) quantum dot heterostructure is reported, whose conductance could be reversibly tuned by the effects of light-induced oxygen adsorption and desorption.

View Article and Find Full Text PDF

We propose and numerically demonstrate an 800 Gbps silicon photonic transmitter with sub-decibel surface-normal optical interfaces. The silicon photonic transmitter is composed of eight silicon Mach-Zehnder optical modulators and an interleaved AMMI WDM device. This WDM device comprises two 1 × 4 angled MMI and a Mach-Zehnder interferometer (MZI) optical interleaver with an apodized bidirectional grating which has about -0.

View Article and Find Full Text PDF

Optical biosensors support disease diagnostic applications, offering high accuracy and sensitivity due to label-free detection and their optical resonance enhancement. However, optical biosensors based on noble metal nanoparticles and precise micro-electromechanical system technology are costly, which is an obstacle for their applications. Here, we proposed a biosensor reuse method with nanoscale parylene C film, taking the silicon-on-insulator microring resonator biosensor as an example.

View Article and Find Full Text PDF

The valley degree of freedom, like the spin degree of freedom in spintronics, is regarded as a new information carrier, promoting the emerging valley photonics. Although there exist topologically protected valley edge states which are immune to optical backscattering caused by defects and sharp edges at the inverse valley Hall phase interfaces composed of ordinary optical dielectric materials, the dispersion and the frequency range of the edge states cannot be tuned once the geometrical parameters of the materials are determined. In this paper, we propose a chirped valley graphene plasmonic metamaterial waveguide composed of the valley graphene plasmonic metamaterials (VGPMs) with regularly varying chemical potentials while keeping the geometrical parameters constant.

View Article and Find Full Text PDF

Artificial synapses based on biological synapses represent a new idea in the field of artificial intelligence with future applications. Current two-terminal RRAM devices have developed tremendously due to the adjustable synaptic plasticity of artificial synapses. However, these devices still have some problems, such as current leakage and poor durability.

View Article and Find Full Text PDF

Circular dichroism spectroscopy is frequently used to characterize the chiral biomolecules by measuring the absorption spectra contrast between the left-handed circularly polarized light and the right-handed circularly polarized light. Compared with biomolecules, chiral metal plasmonic nanostructures also produce a strong circular dichroism response in the range of near-infrared. However, due to the large damping rate, the non-adjustable resonant frequency of the conventional metals, the applications of chiral metal plasmonic nanostructures in the fields of photoelectric detection and chemical and biochemical sensing are restricted.

View Article and Find Full Text PDF

We propose a broadband high-efficiency grating coupler for perfectly vertical fiber-to-chip coupling. The up-reflection is reduced, hence enhanced coupling efficiency is achieved with the help of a Fabry-Perot-like cavity composed of a silicon nitride reflector and the grating itself. With the theory of the Fabry-Perot cavity, the dimensional parameters of the coupler are investigated.

View Article and Find Full Text PDF

In this work, a bidirectional grating coupler for perfectly vertical coupling is proposed. The coupling efficiency is enhanced using a silicon nitride (SiN) layer above a uniform grating. In the presence of SiN layer, the back-reflected optical power into the fiber is diminished and coupling into the waveguide is increased.

View Article and Find Full Text PDF

Tungsten-based memristors possess many advantages as candidates for memristive devices, including gradual changes in resistance states and memorization and learning functions. However, most previous reports mainly focus on studying synaptic learning rules instead of analysing the internal mechanism that results in the exterior learning rules. Herein, we discuss stacked Au/WTiO/Au and Ti/WTiO/Au devices in which the function of the resistance switch is realized by the externally induced local migration of oxygen ions.

View Article and Find Full Text PDF

We propose and experimentally demonstrate an apodized bidirectional grating coupler for high-efficiency, perfectly vertical coupling. Through grating apodization, the coupling efficiency (CE) can be notably improved, and the parasitic reflections can be minimized. For ease of fabrication, subwavelength gratings are introduced, which are also beneficial for the coupling performance.

View Article and Find Full Text PDF

A 4 × 25 Gb/s ultrawide misalignment tolerance wavelength-division-multiplex (WDM) transmitter based on novel bidirectional vertical grating coupler has been demonstrated on complementary metal-oxide-semiconductor (CMOS)-compatible silicon-on-insulator (SOI) platform. Simulations indicate the bidirectional grating coupler (BGC) is widely misalignment tolerant, with an excess coupling loss of only 0.55 dB within ±3 μm fiber misalignment range.

View Article and Find Full Text PDF

A metal-catalyst-free method for the direct growth of patterned graphene on an insulating substrate is reported in this paper. Parylene N is used as the carbon source. The surface molecule layer of parylene N is cross-linked by argon plasma bombardment.

View Article and Find Full Text PDF

Reduced graphene oxide (rGO) has been studied as a resistive ammonia gas sensor at room temperature. The sensitive hybrid material composed of rGO and nano-silver ink (Ag-ink) was loaded on a microstrip patch antenna to realize high-performance wireless ammonia sensors. The material was investigated using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Benefit from exceptional electrical transport properties, graphene receives worldwide attentions, especially in the domain of high frequency electronics. Due to absence of effective bandgap causing off-state the device, graphene material is extraordinarily suitable for analog circuits rather than digital applications. With this unique ambipolar behavior, graphene can be exploited and utilized to achieve high performance for frequency multipliers.

View Article and Find Full Text PDF

Frequency conversion with nonlinear electronic components, a common approach for signal processing required in various communication applications, has found its operation bandwidth bottleneck due to the limited carrier mobility of the traditional materials. Meanwhile, fiber-optics communications are playing a significant role in communication services due to their excellent signal transmission properties. However, the transmitted optical signals had to be converted to electrical signals with photodetectors before frequency conversion was performed through conventional electronic devices, which make this conversion system very complex and costly.

View Article and Find Full Text PDF

Graphene's remarkable electrical and optical properties afford great potential for constructing various optoelectronic devices, including modulators, photodetectors and pulse lasers. In particular, graphene-based optical modulators were demonstrated to be featured with a broadband response, small footprint, ultrafast speed and CMOS-compatibility, which may provide an alternative architecture for light-modulation in integrated photonic circuits. While on-chip graphene modulators have been studied in various structures, most of them are based on a capacitance-like configuration subjected to complicated fabrication processes and providing a low yield of working devices.

View Article and Find Full Text PDF

We proposed and demonstrated a novel optical modulator based on a bidirectional grating coupler designed for perfectly vertical fiber coupling. The grating functions as the fiber coupler and 3-dB splitter. To observe the interference, an arm difference of 30μm is introduced.

View Article and Find Full Text PDF