1,252 results match your criteria: "Institute of Himalayan Bioresource Technology[Affiliation]"

The pervasive use of petroleum-based food packaging has caused significant ecological damage due to their unsustainability and non-biodegradability. Polysaccharide-based biodegradable materials are promising alternatives, but low hydrophobicity and functional properties limit their practical applications which can be overcome by incorporation of phytochemical(s). Therefore, by leveraging the strong antioxidant and antibacterial potential of pterostilbene (PTB), we have developed PTB nanoemulsion (NE) incorporated chitosan/sodium alginate (CS/SA) film for food packaging applications.

View Article and Find Full Text PDF

Balanced plant nutrition and optimal micro-climate are critical for achieving higher production sustainably. Substituting mineral fertilizers with organic amendments under water-conserving strategies like mulch can enhance the quality and yield and improve soil health. Therefore, a two-year study was conducted to examine the synergistic effects of mulch and reducing inorganic fertilizers and partially substituting organic amendments on essential oil (EO) yield and its composition, and soil properties in Salvia sclarea, an industrially important crop.

View Article and Find Full Text PDF

Small molecules inhibiting EPHEMERAL1 to extend flower longevity by regulating petal senescence.

Plant Cell Rep

December 2024

Floriculture Lab, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, (CSIR-IHBT), Palampur, H.P., 176061, India.

Everlastin1 and Everlastin2, potent inhibitors of EPH1, were identified through a wheat cell-free chemical-screening system. This innovative platform enables the development of small molecules that target 'undruggable' transcription factors. By specifically targeting the EPH1 pathway, these inhibitors delay petal senescence, extending the longevity and quality of ornamental flowers.

View Article and Find Full Text PDF

Neuronal nitric oxide synthase activation by tadalafil protects neurological impairments in a zebrafish larva model of hyperammonemia.

Life Sci

January 2025

Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Aims: Hyperammonaemia (HA) is a metabolic disorder characterized by increased ammonia levels in the blood and is associated with severe neurological impairments. Some previous findings have shown the involvement of the nitric oxide pathway in HA-induced neurological impairments. The current study explored the impact of tadalafil on neurological impairments induced by HA in a zebrafish larval model due to its reported indirect interactions with the nitric oxide pathway.

View Article and Find Full Text PDF

The escalating incidence of obesity, diabetes, and insulin resistance has become a significant global health concern. In this study, we have developed a self-nanoemulsifying delivery system (SNEDS) of formononetin-vitamin E conjugate (VESylated-FMN) for improving its oral bioavailability and improving insulin sensitivity and glycemic control. The developed SNEDS were characterized using dynamic light scattering and transmission electron microscopy.

View Article and Find Full Text PDF

MDbDMRP: A novel molecular descriptor-based computational model to identify drug-miRNA relationships.

Int J Biol Macromol

January 2025

Academy of Scientific and Innovative Research, Ghaziabad 201002, India. Electronic address:

MicroRNAs (miRNAs) are important in gene expression regulation and many other biological processes and have emerged as promising therapeutic targets. Identifying potential drug-miRNA relationships is helpful in disease therapy and pharmaceutical engineering in medical research. However, accurately predicting these relationships remains a significant computational challenge.

View Article and Find Full Text PDF

Metagenomic insights into the functional potential of non-sanitary landfill microbiomes in the Indian Himalayan region, highlighting key plastic degrading genes.

J Hazard Mater

February 2025

Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryaman

Solid waste management in the Indian Himalayan Region (IHR) is a growing challenge, intensified by increasing population and tourism, which strain non-sanitary landfills. This study investigates microbial diversity and functional capabilities within these landfills using a high-throughput shotgun metagenomic approach. Physicochemical analysis revealed that the Manali and Mandi landfill sites were under heavy metal contamination and thermal stress.

View Article and Find Full Text PDF

Two mutations in one QTL confer shattering resistance.

Trends Plant Sci

February 2025

Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India. Electronic address:

Resistance to shattering is essential for seed production in domesticated crops. In a recent study, Li et al. found that this trait arose in soybean through mutations in two genes, Shattering1 (Sh1) and Pod dehiscence1 (Pdh1), within a single quantitative trait locus (QTL).

View Article and Find Full Text PDF

Comprehensive analysis of computational approaches in plant transcription factors binding regions discovery.

Heliyon

October 2024

Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC Supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, (HP), 176061, India.

Transcription factors (TFs) are regulatory proteins which bind to a specific DNA region known as the transcription factor binding regions (TFBRs) to regulate the rate of transcription process. The identification of TFBRs has been made possible by a number of experimental and computational techniques established during the past few years. The process of TFBR identification involves peak identification in the binding data, followed by the identification of motif characteristics.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined how the geographical distribution of Juniperus communis leaves affects the yield, chemical composition, and biological activities of their essential oils (EOs), focusing on elevations between 1325-3200 m.
  • Differences in EO yield were noted, with the highest yield (0.48%) from samples collected at Thatri Dhaar, and significant variations in phenolic and flavonoid contents across locations.
  • The research found strong antioxidant activity and the ability of EOs to inhibit specific enzymes and bacteria, suggesting their potential for pharmaceutical applications, while also employing statistical analyses to explore the relationships between metabolites and environmental factors.
View Article and Find Full Text PDF

This paper highlights the need for innovative approaches to enhance cold tolerance. It underscores how genome-editing tools can deepen our understanding of genes involved in cold stress. Cold stress is a significant abiotic factor in high-altitude regions, adversely affecting plant growth and limiting crop productivity.

View Article and Find Full Text PDF

Background: Herbacetin, a flavonol abundant in traditional medicines, is documented as an anti-inflammatory agent. However, information regarding its attributes on lipopolysaccharide (LPS)-induced inflammatory immunopathies has not been delineated yet. The present study aimed to comprehend herbacetin effects on LPS-induced aspects of unwarranted, non-resolving inflammation, particularly via targeting the vicious circle of oxi-inflammatory stress, autophagy-apoptosis, macrophages polarization, impaired inflammasome activation, and inflammatory cascades.

View Article and Find Full Text PDF

Comparative analysis of IRE1s in plants: insights into heat stress adaptation in Triticum aestivum.

BMC Plant Biol

November 2024

Department of Biotechnology & University Center for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.

Background: The unfolded protein response (UPR) pathway serves as a crucial mechanism enabling plants to perceive, respond to, and shield themselves from adverse environmental conditions. Inositol-requiring enzyme 1 (IRE1) is one of the key players of the UPR, and resides in the endoplasmic reticulum (ER) within the cell. This study provides a comprehensive analysis of 195 IRE1 genes across 90 diverse plant species, with a focus on their identification and characterization.

View Article and Find Full Text PDF

Head and neck Squamous Cell Carcinoma (HNSCC) is a growing concern worldwide and MAPKAPK2/MK2 (Mitogen-Activated Protein Kinase Activated Protein Kinase 2) is crucially involved in HNSCC progression. Increased disease burden and lacuna of targeted therapies require novel and safe pharmacological inhibitors to suppress the well-explored molecular targets in HNSCC. Here, we used dibromo-substituted benzosuberene synthesized from the mixture of α, β, γ-himachalenes and utilized as a precursor for the synthesis of Pyrrolone-fused benzosuberenes (PfBS) as MK2 inhibitors through aminocarbonylation approach in a single-pot reaction.

View Article and Find Full Text PDF

Drought-tolerant wheat for enhancing global food security.

Funct Integr Genomics

November 2024

State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.

Wheat is among the most produced grain crops of the world and alone provides a fifth of the world's calories and protein. Wheat has played a key role in food security since the crop served as a Neolithic founder crop for the establishment of world agriculture. Projections showing a decline in global wheat yields in changing climates imply that food security targets could be jeopardized.

View Article and Find Full Text PDF

Titanium Dioxide Nanoparticle: A Comprehensive Review on Synthesis, Applications and Toxicity.

Plants (Basel)

October 2024

Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea.

Nanotechnology has garnered significant interest worldwide due to its wide-ranging applications across various industries. Titanium dioxide nanoparticles are one type of nanoparticle that is commonly utilised in everyday use and can be synthesized by different techniques using physical, chemical and biological extracts. Green synthesis is an economical, environmentally benign and non-toxic method of synthesising nanoparticles.

View Article and Find Full Text PDF

Plant protease inhibitors (PI's) inhibit the activity of gut proteases and thus provide resistance against insect attack. Previously we have published first report on cloning and characterization of a novel Bowman-Birk protease inhibitor gene (RbTI) from ricebean (Vigna umbellata). In this study, the RbTI gene was further characterized and validated as a potential candidate for transferring insect resistance in economically important crops.

View Article and Find Full Text PDF

Saffron stigma, derived from Crocus sativus L., has long been revered in global traditional medicine and continues to hold significant market value. However, despite the extensive focus on saffron stigma, the therapeutic potential of other floral components remains underexplored, primarily due to limited insights into their complex molecular architectures and chemical diversity.

View Article and Find Full Text PDF

Computational and experimental analysis of Luteolin-β-cyclodextrin supramolecular complexes: Insights into conformational dynamics and phase solubility.

Eur J Pharm Biopharm

December 2024

Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Investigating the structural stability of poorly-soluble luteolin (LuT) after encapsulation within cyclodextrins (CDs) is crucial for unlocking the therapeutic potential of LuT bioactive molecule. Herein, native and modified β-CD were employed to investigate LuT inclusion complex formation. Molecular mechanics (MM) and quantum mechanics (QM) were utilized for structural dynamics analysis.

View Article and Find Full Text PDF

Biochemometric-guided isolation of new Isosteroidal alkaloids from Fritillaria cirrhosa D.Don (Liliaceae, syn. Fritillaria roylei Hook) as acetylcholinesterase inhibitors.

Fitoterapia

January 2025

C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Globally, Alzheimer's disease is an urgent public health concern with the ageing population in developing nations. Recent studies have identified isosteroidal alkaloids as promising therapeutic agents for Alzheimer's treatment. Fritillaria species are well-known rich sources of steroidal and isosteroidal alkaloids.

View Article and Find Full Text PDF
Article Synopsis
  • Climate change poses a serious threat to agriculture, prompting the need for sustainable farming practices, specifically through the use of rhizobacterial biostimulants that enhance crop resilience.
  • The study isolated and analyzed 34 strains of ACC-deaminase producing rhizobacteria from the Indian trans-Himalayas, showcasing their plant growth promotion abilities and strong enzyme activity.
  • Field tests demonstrated that certain strains, particularly from the Pseudomonas genus, significantly improved crop growth and productivity under various stress conditions with reduced fertilizer use, benefiting crops like garlic, pea, and maize.
View Article and Find Full Text PDF

An unprecedented and highly reactive Pd/C catalytic system has been introduced for the regiodivergent hydrocarboxylation of terminal alkynes to selectively afford various acrylic and cinnamic acids employing oxalic acid as a CO source as well as a promoter for the formation of the active Pd-H complex. Herein, the formation of cinnamic acid is proposed to follow a unique anti-Markovnikov hydroiodination mechanism and the formation of acrylic acid might follow the traditional hydrocarboxylation pathway. Additionally, internal alkynes undergo hydrocarboxylation and carbonylative esterification with aliphatic alcohols to yield different α,β-unsaturated acids and esters respectively.

View Article and Find Full Text PDF

Aphis craccivora Koch and Planococcus lilacinus Cockerell are phloem feeders and act as vectors for transmitting plant viruses to agricultural and horticultural crops thereby damaging them. The persistent and widespread use of synthetic, wide-spectrum pesticides has resulted in resistance development that is detrimental to the environment, human health, and natural enemies of pests. The present investigation uses various extraction mediums to examine the insecticidal efficacy of essential oils (EOs) isolated from Murraya koenigii (L.

View Article and Find Full Text PDF

Lead (Pb) is a hazardous environmental pollutant that threatens soil health, water quality, and agricultural productivity. Plant growth-promoting rhizobacteria (PGPRs) mediated bioremediation is considered as an eco-friendly approach for agro-environmental sustainability. This study investigated the Pb bioremediation potential of Bacillus altitudinis (IHBT-705).

View Article and Find Full Text PDF

Medicinal Fritillaria herbs, known for their rich content of steroidal alkaloids, have emerged as promising candidates in the treatment of chronic diseases due to their diverse pharmacological properties. Leveraging advancements in network pharmacology and molecular docking, this study explores the multi-target mechanisms through which these alkaloids exert therapeutic effects. The integration of bioinformatics, systems biology, and pharmacology in drug discovery has provided insights into the molecular interactions and pathways influenced by Fritillaria steroidal alkaloids.

View Article and Find Full Text PDF