Publications by authors named "Iyyakkannu Sivanesan"

Variegated is a highly valued ornamental plant sought after in local and international markets. The commercial production of variegated through traditional propagation methods faces significant challenges, such as low propagation rates and prolonged growth periods. This study aims to develop effective in vitro propagation techniques for variegated through asymbiotic seed germination to enhance production efficiency and meet market demand.

View Article and Find Full Text PDF

'White Knight' is a popular climbing evergreen plant typically propagated through stem cuttings. However, this method is slow and inefficient, making it challenging to meet the rising market demand. In vitro propagation could enhance the multiplication of this cultivar.

View Article and Find Full Text PDF

Nanotechnology has revolutionised biomedical research, offering innovative healthcare solutions. Plant-based nanotechnology is emerging as a sustainable alternative, minimising environmental impacts and enhancing therapeutic effectiveness. This paper explores the potential of plant-derived nanoparticles (PNPs) in medicine, highlighting their biocompatibility, multifunctionality, and eco-friendliness.

View Article and Find Full Text PDF

Nanotechnology has garnered significant interest worldwide due to its wide-ranging applications across various industries. Titanium dioxide nanoparticles are one type of nanoparticle that is commonly utilised in everyday use and can be synthesized by different techniques using physical, chemical and biological extracts. Green synthesis is an economical, environmentally benign and non-toxic method of synthesising nanoparticles.

View Article and Find Full Text PDF
Article Synopsis
  • Eggshells, often discarded as waste, are rich in minerals and can pose environmental hazards if not disposed of properly; however, they can be transformed into valuable materials through calcination.
  • This process enhances eggshells to create calcium oxide (CaO) nanoparticles that are effective in photocatalytic pollution remediation, antibacterial activities, and other environmental applications.
  • The study confirms that the CaO nanoparticles derived from eggshells showcase strong catalytic properties and can effectively degrade pollutants like methylene blue dye.
View Article and Find Full Text PDF

Nanobiotechnology, at the intersection of nanotechnology and biology, represents a burgeoning field poised to revolutionize medicine through the use of advanced nanocarriers. These nanocarriers, endowed with distinctive physiobiological attributes, are instrumental in diverse therapeutic domains including drug delivery for microbial infections, cancer treatment, tissue engineering, immunotherapy, and gene therapy. Despite the transformative potential, several challenges hinder their efficacy, such as limited drug capacity, suboptimal targeting, and poor solubility.

View Article and Find Full Text PDF

Plants, being sessile, are continuously exposed to varietal environmental stressors, which consequently induce various bio-physiological changes in plants that hinder their growth and development. Oxidative stress is one of the undesirable consequences in plants triggered due to imbalance in their antioxidant defense system. Biochemical studies suggest that nanoparticles are known to affect the antioxidant system, photosynthesis, and DNA expression in plants.

View Article and Find Full Text PDF

Soil and water pollution is of significant concern worldwide because of the consequences of environmental degradation and harmful effects on human health. Water bodies are very much polluted by various organic and inorganic pollutants by different human activities, including industrial wastes. Environmental pollution remains high because of urbanization-induced industrial developments and human lifestyle.

View Article and Find Full Text PDF

MALDI-TOF MS has decades of experience in the detection and identification of microbial pathogens. This has now become a valuable analytical tool when it comes to the identification and detection of clinical microbial pathogens. This review gives a brief synopsis of what has been achieved using MALDI-TOF MS in clinical microbiology.

View Article and Find Full Text PDF

Contemporary pharmacology dating back to the late 19th/early 20th centuries has benefitted largely from the incorporation of metal complexes. Various biological attributes have been successfully realized using metal/metal complex-based drugs. Among anticancer, antimicrobial, and antiviral applications, anticancer applications have extracted the maximum benefit from the metal complex, Cisplatin.

View Article and Find Full Text PDF

Chitosan derivatives and composites are the next generation polymers for biomedical applications. With their humble origins from the second most abundant naturally available polymer chitin, chitosan is currently one of the most promising polymer systems, with wide biological applications. This current review gives a bird's eye view of the antimicrobial applications of chitosan composites and derivatives.

View Article and Find Full Text PDF

Fruits and vegetables are a vital source of redox-active phytochemicals in the diet. Traditional green leafy vegetables (GLVs) are a rich source of carotenoids, dietary fiber, minerals, phenols, vitamins, and tocopherols and are commonly consumed in rural areas worldwide. In traditional Korean medicine, many GLVs are used to treat various ailments.

View Article and Find Full Text PDF

L. (Crassulaceae)-round-leafed navelwort-is used worldwide as a potted ornamental plant, and it is also used in South African traditional medicine. The current work aims to assess the influence of plant growth regulators (PGR) on somatic embryogenesis (SE) in ; compare the metabolite profile in early, mature, and germinated somatic embryos (SoEs) by utilizing ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS); and determine the antioxidant and enzyme inhibitory potentials of SoEs.

View Article and Find Full Text PDF

Selenium (Se) is a microelement that plays an important nutrient role by influencing various physiological and biochemical traits in plants. It has been shown to stimulate plant metabolism, enhancing secondary metabolites and lowering abiotic and biotic stress in plants. Globally, the enormous applications of nanotechnology in the food and agricultural sectors have vastly expanded.

View Article and Find Full Text PDF

Electricity consumption is an integral part of life on earth. Energy generation has become a critical topic, addressing the need to fuel the energy demands of consumers. Energy storage is an offshoot of the mainstream process, which is now becoming a prime topic of research and development.

View Article and Find Full Text PDF

While plastics are already notorious for their accumulation in the environment, which poses environmental challenges, invisible microplastics (MPS) are an even greater challenge. This review focuses on consolidating the reports available on MP accumulation in edible marine and freshwater fishes, shrimps, and crabs. The reality as to whether MPs in these edible aquatic organisms are really a cause of high concern is questioned and discussed.

View Article and Find Full Text PDF
Article Synopsis
  • Nature provides vital resources through plants, offering both nutritional and therapeutic benefits to humans.
  • Flavonoids, particularly luteolin, are significant among plant secondary metabolites, known for their role in disease treatment and prevention.
  • This review highlights luteolin's sources, biosynthesis, and diverse health benefits, including anti-cancer and anti-inflammatory properties, while emphasizing the importance of utilizing this natural compound.
View Article and Find Full Text PDF

Mushrooms are the gifts of the non-green revolution; they are not limited by land demand or specific growth requirements. Nearly 14,000 species of mushrooms are on record thus far; of these, only 2200 species are deemed edible. Only 650 species from this list have been cultivated and consumed.

View Article and Find Full Text PDF

Somatic embryogenesis (SE) is a mode of stimulated plant cell totipotency wherein embryos form without fertilization either through somatic or vegetative origins. SE has two main phases: induction and a developmental phase. The induction phase comprises cell proliferation and dedifferentiation, whereas the developmental phase involves the differentiation of somatic embryos under appropriate stimuli.

View Article and Find Full Text PDF

Of the biologically active components, polysaccharides play a crucial role of high medical and pharmaceutical significance. Mushrooms have existed for a long time, dating back to the time of the Ancient Egypt and continue to be well explored globally and experimented with in research as well as in national and international cuisines. Mushroom polysaccharides have slowly become valuable sources of nutraceuticals which have been able to treat various diseases and disorders in humans.

View Article and Find Full Text PDF

Chitosan has come a long way in biomedical applications: drug delivery is one of its core areas of imminent application. Chitosan derivatives are the new generation variants of chitosan. These modified chitosans have overcome limitations and progressed in the area of drug delivery.

View Article and Find Full Text PDF

Chitosan and its allies have in multiple ways expanded into the medical, food, chemical, and biological industries and is still expanding. With its humble beginnings from marine shell wastes, the deacetylated form of chitin has come a long way in clinical practices. The biomedical applications of chitosan are truly a feather on its cap, with rarer aspects being chitosan's role in tissue regeneration and artificial organs.

View Article and Find Full Text PDF

MALDI-TOF-MS has essentially delivered more than expected with respect to clinical pathogens. Viruses are the most versatile entities of clinical pathogens that have challenged well-established microbiological methodologies. This review evaluates the existing scenario with respect to MALDI TOF-MS analytical technique in the successful analysis of viral pathogens.

View Article and Find Full Text PDF

Trees are vital resources for economic, environmental, and industrial growth, supporting human life directly or indirectly through a wide variety of therapeutic compounds, commodities, and ecological services. Roxb. (Fabaceae) is one of the most valuable multipurpose forest trees in India and Sri Lanka, as it is cultivated for quality wood as well as pharmaceutically bioactive compounds, especially from the stem bark and heartwood.

View Article and Find Full Text PDF

Lipophilic metabolites such as carotenoids, fatty acids, vitamin K1, phytosterols, and tocopherols are important antioxidants that are used in the cosmetics, foods, and nutraceutical industries. Recently, there has been a growing demand for the use of byproducts (wastes) as a potential source of industrially important compounds. The leaves of (black ginger) (KP-BG) are major byproducts of KP-BG cultivation and have been reported to contain several bioactive metabolites; however, the composition of lipophilic metabolites in KP-BG leaves has not been examined.

View Article and Find Full Text PDF