98%
921
2 minutes
20
Saffron stigma, derived from Crocus sativus L., has long been revered in global traditional medicine and continues to hold significant market value. However, despite the extensive focus on saffron stigma, the therapeutic potential of other floral components remains underexplored, primarily due to limited insights into their complex molecular architectures and chemical diversity. To address this gap, we performed a comprehensive metabolomic analysis of various floral organs utilizing advanced analytical platforms, including GC-MS and UPLC-MS/MS. This in-depth profiling revealed a diverse array of 248 metabolites, encompassing amino acids, sugar derivatives, fatty acids, flavonoids, vitamins, polyamines, organic acids, and a broad spectrum of secondary metabolites. Distinct correlation patterns among these metabolites were identified through PCA and PLS-DA, highlighting unique metabolomic signatures inherent to each floral organ. We further integrated these metabolomic findings with our transcriptomic data, enabling a detailed understanding of the molecular and metabolic variations across different floral organs. The pronounced abundance of differentially expressed genes and metabolites in the stamen (424), leaf (345), tepal (196), stigma (177), and corm (133) underscores the intricate regulatory networks governing source-to-sink partitioning and dynamic metabolic processes. Notably, our study identified several bioactive compounds, including crocin, picrocrocin, crocetin, safranal, cannabielsoin, quercetin, prenylnaringenin, isorhamnetin, pelargonidin, kaempferol, and gallic acid, all of which exhibit potential therapeutic properties. In conclusion, this comprehensive analysis significantly enhances our understanding of the molecular mechanisms driving the biosynthesis of apocarotenoids, cannabinoids, anthocyanins, and flavonoids in saffron, thereby providing valuable insights and paving the way for future research in this area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ppl.14598 | DOI Listing |
Nat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China.
Ambroxol (AMB), a common expectorant, enters aquatic environments via wastewater, yet its ecological risks remain unclear. Under UV exposure (15 mJ·cm, λ = 185-400 nm), AMB undergoes photolysis, among the photoproducts, 4-((2-amino-3-bromobenzyl)amino) cyclohexanol (P1) and 2-amino-3,5-dibromobenzaldehyde (DBA) are major species, comprising over 50% of the total photoproduct peak area at the photolytic plateau. Acute toxicity tests with AMB, P1, and DBA in four aquatic species at different trophic levels revealed: the highest sensitivity in (LC = 0.
View Article and Find Full Text PDFSemin Nephrol
September 2025
Division of Nephrology, Internal Medicine, University of Michigan, Ann Arbor, MI. Electronic address:
Despite intensive research efforts, acute kidney injury (AKI) is a common clinical syndrome that has limited treatment options apart from supportive care. The increasing availability of molecular interrogation data from patients with Acute Kidney Injury provides an unparalleled opportunity to leverage systems biology approaches. In this review, we discuss the challenges with AKI research, explain how systems biology approaches can link molecular data to clinical phenotypes, review available molecular interrogation tools and techniques, and provide examples where systems biology approaches have been successfully applied in nephrology.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2025
Shanxi Normal University, Taiyuan, 030000, PR China.
Suaeda salsa(S.salsa) is a promising halophytic species for vegetation restoration in highly saline-alkali soils. Carboxylated single-walled carbon nanotubes (COOH-SWCNTs) have emerged as potential agents for modulating plant responses to abiotic stress.
View Article and Find Full Text PDFMethods
September 2025
Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China. Electronic address:
Single-cell surface-enhanced Raman scattering (SERS) has emerged as a powerful tool for precision medicine owing to its label-free detection, ultrasensitivity, and unique molecular fingerprinting. Unlike conventional bulk analysis, it enables detailed characterization of cellular heterogeneity, with particular promise in circulating tumor cell (CTC) identification, tumor microenvironment (TME) metabolic profiling, subcellular imaging, and drug sensitivity assessment. Coupled with microfluidic droplet systems, SERS supports high-throughput single-cell analysis and multiparametric screening, while integration with complementary modalities such as fluorescence microscopy and mass spectrometry enhances temporal and spatial resolution for monitoring live cells.
View Article and Find Full Text PDF