98%
921
2 minutes
20
Single-cell surface-enhanced Raman scattering (SERS) has emerged as a powerful tool for precision medicine owing to its label-free detection, ultrasensitivity, and unique molecular fingerprinting. Unlike conventional bulk analysis, it enables detailed characterization of cellular heterogeneity, with particular promise in circulating tumor cell (CTC) identification, tumor microenvironment (TME) metabolic profiling, subcellular imaging, and drug sensitivity assessment. Coupled with microfluidic droplet systems, SERS supports high-throughput single-cell analysis and multiparametric screening, while integration with complementary modalities such as fluorescence microscopy and mass spectrometry enhances temporal and spatial resolution for monitoring live cells. Despite hurdles in nanoprobe safety, complex spectral interpretation, and clinical translation, advances in AI-driven data processing (e.g., convolutional neural networks) and miniaturized devices are accelerating progress toward intraoperative guidance, improved liquid biopsy, and primary healthcare adoption. Looking ahead, its applications in single-cell metabolomics, exosome studies, and microbial detection hold promise for uncovering disease mechanisms and fostering personalized diagnostics and therapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymeth.2025.09.002 | DOI Listing |
Cytopathology
September 2025
Department of Cardiothoracic and Vascular Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India.
Mediastinal masses often present acutely as medical emergencies, necessitating prompt and accurate diagnosis. Imaging-guided fine needle aspiration cytology (FNAC) plays a pivotal role in rapidly identifying rare mediastinal tumours and differentiating them from other potential aetiologies, enabling timely intervention. Primary mediastinal germ cell tumours (PMGCTs) constitute approximately 15% of adult mediastinal neoplasms.
View Article and Find Full Text PDFEur J Case Rep Intern Med
July 2025
Servicio de Alergia e Inmunología, Hospital Británico de Buenos Aires, Argentina.
Introduction: Interstitial lung disease is a major complication in patients with common variable immunodeficiency. There are some publications that try to shed light on the pathophysiology of this non-infectious complication, most of them highlight the role of follicular T cells and CD21 B cells. Moreover, there are no guidelines based on randomized controlled studies on the treatment of patients with interstitial lung disease and the published case series or small uncontrolled studies describe a wide range of response rates to treatment.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Pathological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States.
Oncolytic virotherapy (OVT) has emerged as a promising and innovative cancer treatment strategy that harnesses engineered viruses to selectively infect, replicate within, and destroys malignant cells while sparing healthy tissues. Beyond direct oncolysis, oncolytic viruses (OVs) exploit tumor-specific metabolic, antiviral, and immunological vulnerabilities to reshape the tumor microenvironment (TME) and initiate systemic antitumor immunity. Despite promising results from preclinical and clinical studies, several barriers, including inefficient intratumoral virus delivery, immune clearance, and tumor heterogeneity, continue to limit the therapeutic advantages of OVT as a standalone modality and hindered its clinical success.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Thoracic Surgery, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China.
Background: Lung cancer remains the leading cause of cancer-related mortality globally, primarily due to late-stage diagnosis, molecular heterogeneity, and therapy resistance. Key biomarkers such as EGFR, ALK, KRAS, and PD-1 have revolutionized precision oncology; however, comprehensive structural and clinical validation of these targets is crucial to enhance therapeutic efficacy.
Methods: Protein sequences for EGFR, ALK, KRAS, and PD-1 were retrieved from UniProt and modeled using SWISS-MODEL to generate high-confidence 3D structures.
J Inflamm Res
September 2025
Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
Introduction: While nucleus pulposus cell (NPC) degeneration is a primary driver of intervertebral disc degeneration (IVDD), the cellular heterogeneity and molecular interactions underlying NPC degeneration remain poorly characterized. Previous studies have shown that EGFR signaling plays a significant role in NPC differentiation and collagen matrix production. Consequently, this study aims to identify the critical downstream regulatory molecule of EGFR in the process of NPC degeneration.
View Article and Find Full Text PDF