15,462 results match your criteria: "Indian Institute of Engineering Science & Technology[Affiliation]"

Background: Recent advances in high-throughput sequencing technologies have enabled the collection and sharing of a massive amount of omics data, along with its associated metadata-descriptive information that contextualizes the data, including phenotypic traits and experimental design. Enhancing metadata availability is critical to ensure data reusability and reproducibility and to facilitate novel biomedical discoveries through effective data reuse. Yet, incomplete metadata accompanying public omics data may hinder reproducibility and reusability and limit secondary analyses.

View Article and Find Full Text PDF

Background: Docetaxel is the most common chemotherapy regimen for several neoplasms, including advanced OSCC (Oral Squamous Cell Carcinoma). Unfortunately, chemoresistance leads to relapse and adverse disease outcomes.

Methods: We performed CRISPR-based kinome screening to identify potential players of Docetaxel resistance.

View Article and Find Full Text PDF

The immune system uses a variety of DNA sensors, including endo-lysosomal Toll-like receptors 9 (TLR9) and cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These sensors activate immune responses by inducing the production of a variety of cytokines, including type I interferons (IFN). Activation of cGAS requires DNA-cGAS interaction.

View Article and Find Full Text PDF

Machine learning based classification of imagined speech electroencephalogram data from the amplitude and phase spectrum of frequency domain EEG signal.

Biomed Phys Eng Express

September 2025

electrical engineering department, Indian Institute of Technology Roorkee, Research wing, electrical department, Roorkee, uttrakhand, 247664, INDIA.

Imagined speech classification involves decoding brain signals to recognize verbalized thoughts or intentions without actual speech production. This technology has significant implications for individuals with speech impairments, offering a means to communicate through neural signals. The prime objective of this work is to propose an innovative machine learning (ML) based classification methodology that combines electroencephalogram (EEG) data augmentation using a sliding window technique with statistical feature extraction from the amplitude and phase spectrum of frequency domain EEG segments.

View Article and Find Full Text PDF

Photoremovable protecting groups (PRPGs) enable precise spatiotemporal control over molecular release and functional activation. Recent advances have introduced wavelength-selective systems for sequential deprotection, broadening applications in drug delivery, material synthesis, and photopolymerization. In parallel, PRPGs play a crucial role in photobase generators (PBGs) and photoacid generators (PAGs), enabling oxygen-tolerant, spatially controlled polymerization and depolymerization through light-induced base and acid release.

View Article and Find Full Text PDF

Next-Generation Food Drying: Specialized and Smart Approaches to Boost Efficiency and Quality.

Compr Rev Food Sci Food Saf

September 2025

Department of Life Science (Food Science and Technology Division), GITAM University, Visakhapatnam, Andhra Pradesh, India.

Drying is a critical unit operation in food processing, essential for extending shelf life, ensuring microbial safety, and preserving the nutritional and sensory attributes of food products. However, conventional convective drying techniques are often energy-intensive and lead to undesirable changes such as texture degradation, loss of bioactive compounds, and reduced product quality, thereby raising concerns regarding their sustainability and efficiency. In response, recent advancements have focused on the development of innovative drying technologies that offer energy-efficient, rapid, and quality-preserving alternatives.

View Article and Find Full Text PDF

A potential replacement that alleviates the shortcomings of the dominant light absorber materials used in solar photovoltaics has been synthesized, and its microstructural, electronic structure, and optical properties have been investigated. KCuS crystals were synthesized by the carbonate method. Transmission electron microscopy (TEM) established [010] as the growth direction of the needle-like monoclinic crystals.

View Article and Find Full Text PDF

The length of actin filaments is regulated by the combined action of hundreds of actin-binding proteins. While the roles of individual proteins are well understood, how they combine to regulate actin dynamics in vivo remains unclear. Recent advances in microscopy have enabled precise, high-throughput measurements of filament lengths over time.

View Article and Find Full Text PDF

Flow fields (FFs) play multifaceted roles in direct methanol fuel cells (DMFC) by facilitating the transport and distribution of species, removal of products, support to the membrane electrode assembly (MEA), electrical conductivity, water, and thermal management. Therefore, the performance of DMFC is directly related to the pattern and geometry of the FF. DMFCs can generate power density of up to ≈100-300 mW cm; however, their performance is impeded by cathode flooding, CO gas bubbles formation, and mass transfer limitations.

View Article and Find Full Text PDF

Accumulation of waste plastics on the earth's surface is a global challenge. There is a possibility of turning this challenge into an opportunity by plastic upcycling. In this work, the potential of bismuth oxychloride (BiOCl) as a heterogeneous catalyst for the glycolysis of polyethylene terephthalate (PET) is reported.

View Article and Find Full Text PDF

Objectives: Type 2 diabetes (T2D) is a growing public health burden with persistent racial and ethnic disparities. . This study assessed the completeness of social determinants of health (SdoH) data for patients with T2D in Epic Cosmos, a nationwide, cross-institutional electronic health recors (EHR) database.

View Article and Find Full Text PDF

Genome graphs provide a powerful reference structure for representing genetic diversity. Their structure emphasizes the polymorphic regions in a collection of genomes, enabling network-based comparisons of population-level variation. However, current tools are limited in their ability to quantify and compare structural features across large genome graphs.

View Article and Find Full Text PDF

Early-stage cancer diagnosis is considered a grand challenge, and even though advanced analytical assays have been established through molecular biology techniques, there are still clinical limitations. For example, low concentration of target biomarkers at early stages of cancer, background values from the healthy cells, individual variation, and factors like DNA mutations, remain the limiting factor in early cancer detection. Volatile organic compound (VOC) biomarkers in exhaled breath are produced during cancer cell metabolism, and therefore may present a promising way to diagnose cancer at the early stage since they can be detected both rapidly and non-invasively.

View Article and Find Full Text PDF

The coexistence of antibiotics (AB) and microplastics (MP) in the environment has led to the formation of AB-MP complexes, posing several ecological and public health challenges. This review explores the mechanisms driving AB adsorption onto MPs, including diverse interactions (hydrophobic interactions, hydrogen bonding, π-π stacking, and ionic exchange) and their role in maintaining the persistence and mobility of the complexes. These complexes have been reported to serve as reservoirs/vectors for antimicrobial resistance (AMR), disrupt microbial communities, and enhance the bioavailability of ABs, thus posing various threats affecting biodiversity health and ecosystem stability.

View Article and Find Full Text PDF

Integrating multi-enzyme systems within metal-organic frameworks (MOFs) has garnered significant attention in biocatalysis due to their tunable structural properties and ability to enhance enzyme performance in cascade reactions. The unique features of MOFs, such as well-defined pore apertures, tailorable compositions, and high loading capacity, facilitate the design of robust multi-enzyme bio-composites with enhanced recyclability and specificity. This review explores systematic approaches for the compartmentalization and positional co-immobilization of multiple enzymes within MOFs, focusing on two key strategies: (i) layer-by-layer assembly and (ii) pore-engineered compartmentalization.

View Article and Find Full Text PDF

Diagnostic potential of sialin in identifying endothelial dysfunction is explored. 50 CAD patients, 50 young (20-35 years) dyslipidemic individuals (DLP), and 50 healthy controls (HC) were included in the study. HUVECs were stimulated with either TNFα or AT-2.

View Article and Find Full Text PDF

This study presents a novel photovoltaic triboelectric nanogenerator (PTENG) that operates on sliding contacts between n-type (gallium arsenide) GaAs and metal electrodes in the presence of periodic light illumination, which offers harvesting energy synergistically by integrating both photovoltaic and triboelectric effects to enhance the energy output. Using an in-house built test setup with provision of laser illumination, the open-circuit voltage () and short-circuit current () were measured for the n-GaAs semiconductors with different metal contacts (Al and Cu). Under both laser light (630 nm) and without laser light conditions, n-GaAs with aluminum contacts exhibited the highest and values, reaching up to 11.

View Article and Find Full Text PDF

Designing multifunctional nanomaterials is economically and practically advantageous. Herein, this work reports a surfactant-mediated synthesis of NiTe nanoparticles (NPs) and their applications in electrocatalysis, energy storage, and sustainable green catalysis. The NiTe NPs exhibit excellent hydrogen evolution reaction (HER) activity, with a low overpotential of 309 mV versus RHE at 10 mA cm and a Tafel slope of 50 mV dec, indicating fast kinetics.

View Article and Find Full Text PDF

The study of individual differences in healthy controls can provide precise descriptions of individual brain activity. Following this direction, researchers have tried to identify a subject using their functional connectivity (FC) patterns computed by functional magnetic resonance imaging (fMRI) data of the brain. Currently, there is an emerging focus on investigating the identifiability over the temporal variability of the FC.

View Article and Find Full Text PDF

Metalloenzymes activate molecular oxygen within their catalytic cycles to generate a reactive species capable of substrate transformation. In many iron-containing enzymes, it is a high-valent iron(IV)-oxo complex that is synthesized from an iron(III)-alkylperoxo intermediate, although direct observation and characterization of such species have remained elusive, leaving their mechanistic role uncertain. To address this gap in our understanding, we present here the synthesis, comprehensive characterization, and reactivity of a novel thioether-ligated iron(III)-alkylperoxo complex supported by the ligand 2-((2-(pyridin-2-yl)ethyl)thio)-N,N-bis(pyridin-2-ylmethyl)ethan-1-amine.

View Article and Find Full Text PDF

Closed capsules, such as lipid vesicles, soap bubbles, and emulsion droplets, are ubiquitous throughout biology, engineered matter, and everyday life. Their creation and disintegration are defined by a singularity that separates a topologically distinct extended liquid film from a boundary-free closed shell. Such topology-changing processes are of fundamental interest.

View Article and Find Full Text PDF

This study focuses on tripartite synthesis of Silver (AgNPs), Mesoporous Silica (MSNs), and Hydroxyapatite (n-HAp) nanoparticles with aqueous extract of Cissus quadrangularis (Veldt grape plant; Indian name: Pirandai) as a reducing agent. The dried and powdered form of the plant was subjected to aqueous extraction. The phytochemicals analysis was qualitatively estimated which detected the presence of alkaloid, tannin, phenol, terpenoid, steroid and saponin.

View Article and Find Full Text PDF

Aluminum (Al)-ion batteries have gained popularity because of their improved energy density, increased safety, eco-friendliness, abundant Al resources, and extremely attractive three-electron redox, making Al-ion batteries an appealing candidate. However, the progress in Al-ion batteries has been hindered by the unavailability of potential cathode materials that could reversibly host Al ions. In this work, we investigated VSe, a 2D material with a graphene-like layered structure, as a potential cathode for aqueous aluminum-ion batteries.

View Article and Find Full Text PDF

Conventional methods to combat phytopathogens have ecological implications: chemical fertilizers pollute the environment, while bioinoculants are often inconsistent under field conditions. Microbiome-assisted rhizosphere engineering aims to re-structure the rhizosphere microbiome to promote plant growth and/or mitigate stress. This study employs a strategy based on rhizosphere engineering to combat stress caused by Fusarium udum in Cajanus cajan, by generating synthetic microbial communities (SMCs).

View Article and Find Full Text PDF

Granular ball twin support vector machine with Universum data.

Neural Netw

August 2025

Department of Computer Science and Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India. Electronic address:

Support vector machines often underperform when limited to labelled target class data and demonstrate sensitivity to noise and outliers. To address these limitations, we propose the Granular Ball Twin Support Vector Machine with Universum Data (GBU-TSVM), which uniquely integrates Universum samples with granular ball computing in the TSVM framework. Unlike conventional TSVMs representing data as points in feature space, the proposed GBU-TSVM models instances as hyperballs, significantly improving robustness against noise while enhancing computational efficiency.

View Article and Find Full Text PDF