304 results match your criteria: "CSIC and The Barcelona Institute of Science and Technology[Affiliation]"

AFM-Based Deep Learning Decodes Human Macrophage Mechanophenotypes.

Small Methods

July 2025

Laboratory of Inflammation and Vaccines, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.

Macrophage polarization into inflammatory (M1) and repairing/healing (M2) functional phenotypes are fundamental mechanisms in immune defensive responses, tissue repair, and disease control. Conventional phenotyping approaches based on molecular biomarkers are limited by destructive protocols, static endpoint analyses, and a disregard for the biomechanical attributes of cells. In this study, an integrated artificial intelligence (AI)-atomic force microscopy (AFM) platform is introduced that enables label-free, mechanophenotyping of macrophages at single-cell resolution.

View Article and Find Full Text PDF

Cerebrospinal fluid lipoprotein-mediated cholesterol delivery to neurons is impaired in Alzheimer's disease and involves APOE4.

J Lipid Res

August 2025

Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain; Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. Electronic address:

In the central nervous system, apolipoprotein (APO)E-containing lipoprotein particles mediate the transport of glial-derived cholesterol to neurons, which is essential for neuronal membrane remodeling and maintenance of the myelin sheath. We aimed to examine cholesterol transport via lipoprotein particles in cerebrospinal fluid (CSF) of Alzheimer's disease (AD) patients compared to control individuals. Additionally, we explored the ability of reconstituted HDL containing different APOE isoforms to regulate cholesterol transport.

View Article and Find Full Text PDF

Molecules are typically synthesized through stepwise processes involving chemical reactions between simple molecular precursors. Here, we report an advance in the synthesis of new organic molecules based on the approach of clip-off chemistry, in which molecules are excised from ordered, extended organic structures. We synthesized macrocycles by selectively cleaving them out of covalent organic frameworks.

View Article and Find Full Text PDF

Synthesis of mesoporous metal-organic cages or polyhedra (MOCs or MOPs) that retain their porous functionality in the solid-state remains challenging, given their tendency to collapse upon desolvation. Herein, we report the use of the isoreticular expansion approach to synthesize two permanently porous Rh(II)-based octahedral MOPs within the mesoporous regime. Our mesoporous MOPs, featuring internal cavities of up to 12.

View Article and Find Full Text PDF

Moiré materials represent strongly interacting electron systems bridging topological and correlated physics. Despite notable advances, decoding wavefunction properties underlying the quantum geometry remains challenging. Here we utilize polarization-resolved photocurrent measurements to probe magic-angle twisted bilayer graphene, leveraging its sensitivity to the Berry connection that encompasses quantum 'textures' of electron wavefunctions.

View Article and Find Full Text PDF

The lifespan of halide perovskite solar cells (PSCs) is currently a major concern for the implementation and commercialization of the technology. Tensile and compressive strain alters the halide perovskite (HP) lattice under operando conditions, affecting PSC stability. However, the mechanisms governing strain responses are still unknown.

View Article and Find Full Text PDF

Synthesis of organic molecules spray-drying.

Chem Sci

April 2025

Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra 08193 Barcelona Spain

Confining chemical reactions within microdroplets has attracted significant attention from chemists due to the accelerated reaction rates resulting from the drastically smaller reaction volumes than in standard solutions. Herein we report that, beyond its widespread use for producing dry-powder formulations for industries ( pharmaceuticals and food) the atomization of microdroplets followed by drying in a hot gas stream, spray-drying can also be employed in organic synthesis. Specifically, we used spray-drying to run three model reactions: a Schiff-base condensation, a Claisen-Schmidt reaction, and acylation of amines, for synthesizing small organic molecules.

View Article and Find Full Text PDF

Integrating lipid self-assemblies with metal-organic frameworks (MOFs) creates biocomposites ideal for encapsulation, protection, and delivery of functional species. This can be achieved using preformed MOFs or through in situ MOF formation. Herein, the one-pot formation of ZIF-8 MOF particles in the presence of two lipid self-assemblies (vesicles or liposomes) is reported, generating two types of hybrid lipid/ZIF-8 biocomposites.

View Article and Find Full Text PDF

van der Waals heterostructures provide a versatile platform for tailoring electrical, magnetic, optical and spin transport properties via proximity effects. Hexagonal transition metal dichalcogenides induce valley Zeeman spin-orbit coupling in graphene, creating spin lifetime anisotropy between in-plane and out-of-plane spin orientations. However, in-plane spin lifetimes remain isotropic due to the inherent heterostructure's three-fold symmetry.

View Article and Find Full Text PDF

Functional spin crossover (SCO) metal-organic frameworks (MOFs) hold promise for miniaturized spin-based devices due to their tuneable molecule-based properties near room temperature. SCO describes the phenomenon where transition metal ions switch between high spin (HS) and low spin (LS) states upon external stimuli. However, even simple guest molecules like water can significantly alter the properties of these materials.

View Article and Find Full Text PDF

Stitched textile-based microfluidics for wearable devices.

Lab Chip

December 2024

Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden.

Thread-based microfluidics, which rely on capillary forces in threads for liquid flow, are a promising alternative to conventional microfluidics, as they can be easily integrated into wearable textile-based biosensors. We present here advanced textile-based microfluidic devices fabricated by machine stitching, using only commercially available textiles. We stitch a polyester "Coolmax®" yarn with enhanced wicking abilities into both hydrophobic fabric and hydrophobically treated stretchable fabric, that serve as non-wicking substrates.

View Article and Find Full Text PDF

Brain-computer interfaces (BCI) are promising for severe neurological conditions and there are ongoing efforts to develop state-of-the-art neural interfaces, hardware, and software tools. We tested the potential of novel reduced graphene oxide (rGO) electrodes implanted epidurally over the hind limb representation of the primary somatosensory (S1) cortex of rats, and compared them to commercial platinum-iridium (Pt-Ir) 16-channel electrodes (active site diameter: 25m).Motor and somatosensory information was decoded offline from microelectrocorticography (ECoG) signals recorded while unrestrained rats performed a simple behavioral task: pressing a lever and the subsequent vibrotactile stimulation of the glabrous skin at three displacement amplitude levels and at two sinusoidal frequencies.

View Article and Find Full Text PDF

Herein, we present a novel methodology for synthesizing metal clusters or secondary building units (SBUs) that are subsequently employed to construct innovative metal-organic frameworks (MOFs) via dynamic covalent chemistry. Our approach entails extraction of SBUs from preformed MOFs through complete disassembly by clip-off chemistry. The initial MOF precursor is designed to incorporate the desired SBU, connected exclusively by cleavable linkers (in this study, with olefinic bonds).

View Article and Find Full Text PDF
Article Synopsis
  • Lead (Pb) is a toxic heavy metal that poses health and environmental risks, increasing the need for efficient detection methods.
  • A new photochemical approach was developed to create thioglycolic acid-stabilized CdTe/ZnSe quantum dots that fluoresce green and are highly sensitive to Pb ions, enabling the creation of a simple on-site sensor.
  • This sensor can accurately detect Pb in various water samples with a detection limit of 31.8 nM, demonstrating effective performance in real-world conditions and potential for environmental monitoring.
View Article and Find Full Text PDF

Most reported porous materials are either extended networks or monomeric discrete cavities; indeed, porous structures of intermediate size have scarcely been explored. Herein, we present the stepwise linkage of discrete porous metal-organic cages or polyhedra (MOPs) into oligomeric structures with a finite number of MOP units. The synthesis of these new oligomeric porous molecules entails the preparation of 1-connected (1-c) MOPs with only one available azide reactive site on their surface.

View Article and Find Full Text PDF

The activity of catalytic nanoparticles is strongly dependent on their surface chemistry, which controls colloidal stability and substrate diffusion toward catalytic sites. In this work, we studied how the outer surface chemistry of nanostructured Rh(II)-based metal-organic cages or polyhedra (Rh-MOPs) impacts their performance in homogeneous catalysis. Specifically, through post-synthetic coordination of aliphatic imidazole ligands onto the exohedral Rh(II) axial sites of Rh-MOPs, we solubilized a cuboctahedral Rh-MOP in dichloromethane, thereby enabling its use as a homogeneous catalyst.

View Article and Find Full Text PDF

Infection diseases are a major threat to global public health, with nosocomial infections being of particular concern. In this context, antimicrobial coatings emerge as a promising prophylactic strategy to reduce the transmission of pathogens and control infections. Here, antimicrobial door handle covers to prevent cross-contamination are prepared by incorporating iodine-loaded UiO-66 microparticles into a potentially biodegradable polyurethane polymer (Baycusan eco E 1000).

View Article and Find Full Text PDF

Reduced graphene oxide electrodes meet lateral flow assays: A promising path to advanced point-of-care diagnostics.

Biosens Bioelectron

August 2024

Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193, Barcelona, Spain; ICREA Institució Catalana de Recerca i Estudis Avançats, Passeig de Lluís Companys,

Research in electrochemical detection in lateral flow assays (LFAs) has gained significant momentum in recent years. The primary impetus for this surge in interest is the pursuit of achieving lower limits of detection, especially given that LFAs are the most widely employed point-of-care biosensors. Conventionally, the strategy for merging electrochemistry and LFAs has centered on the superposition of screen-printed electrodes onto nitrocellulose substrates during LFA fabrication.

View Article and Find Full Text PDF

Artificial Intelligence-Based, Wavelet-Aided Prediction of Long-Term Outdoor Performance of Perovskite Solar Cells.

ACS Energy Lett

April 2024

Department of Electrical Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty Strasse 1, 85748 Garching bei Munich,Germany.

The commercial development of perovskite solar cells (PSCs) has been significantly delayed by the constraint of performing time-consuming degradation studies under real outdoor conditions. These are necessary steps to determine the device lifetime, an area where PSCs traditionally suffer. In this work, we demonstrate that the outdoor degradation behavior of PSCs can be predicted by employing accelerated indoor stability analyses.

View Article and Find Full Text PDF

Inducing, understanding, and controlling the flexibility in metal-organic frameworks (MOFs) are of utmost interest due to the potential applications of dynamic materials in gas-related technologies. Herein, we report the synthesis of two isostructural two-dimensional (2D) interweaving zinc(II) MOFs, TMU-27 [Zn(bpipa)(bdc)] and TMU-27-NH [Zn(bpipa)(NH-bdc)], based on ,'-bis-4-pyridyl-isophthalamide (bpipa) and 1,4-benzenedicarboxylate (bdc) or 2-amino-1,4-benzenedicarboxylate (NH-bdc), respectively. These frameworks differ only by the substitution at the meta-position of their respective bdc groups: an H atom in TMU-27 vs an NH group in TMU-27-NH.

View Article and Find Full Text PDF

Capacitive immunosensing at gold nanoparticle-decorated reduced graphene oxide electrodes fabricated by one-step laser nanostructuration.

Biosens Bioelectron

May 2024

Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193, Barcelona, Spain; ICREA Institució Catalana de Recerca i Estudis Avançats, Passeig de Lluís Companys,

Nanostructured electrochemical biosensors have ushered in a new era of diagnostic precision, offering enhanced sensitivity and specificity for clinical biomarker detection. Among them, capacitive biosensing enables ultrasensitive label-free detection of multiple molecular targets. However, the complexity and cost associated with conventional fabrication methods of nanostructured platforms hinder the widespread adoption of these devices.

View Article and Find Full Text PDF

Regioswitchable Bingel Bis-Functionalization of Fullerene C via Supramolecular Masks.

J Am Chem Soc

February 2024

Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, 17003 Girona, Catalonia, Spain.

Isomer-pure functionalized fullerenes are required to boost the development of fullerene chemistry in any field, but their multiple functionalization renders a mixture of regioisomers that are very difficult to purify by chromatography. For the specific case of C, its nonspherical geometry makes its regioselective functionalization more challenging than that of spherical C. In this work, the supramolecular mask approach is applied for the first time to C, which is encapsulated in two different nanocapsules to achieve the Bingel bis-cyclopropanation at α-bonds of opposite poles.

View Article and Find Full Text PDF

Topological insulators (TIs) hold promise for manipulating the magnetization of a ferromagnet (FM) through the spin-orbit torque (SOT) mechanism. However, integrating TIs with conventional FMs often leads to significant device-to-device variations and a broad distribution of SOT magnitudes. In this work, we present a scalable approach to grow a full van der Waals FM/TI heterostructure by molecular beam epitaxy, combining the charge-compensated TI (Bi,Sb)Te with 2D FM FeGeTe (FGT).

View Article and Find Full Text PDF

Nano/microformulations for Bacteriophage Delivery.

Methods Mol Biol

December 2023

Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Spain.

Encapsulation methodologies allow the protection of bacteriophages for overcoming critical environmental conditions. Moreover, they improve the stability and the controlled delivery of bacteriophages which is of great innovative value in bacteriophage therapy. Here, two different encapsulation methodologies of bacteriophages are described using two biocompatible materials: a lipid cationic mixture and a combination of alginate with the antacid CaCO.

View Article and Find Full Text PDF