98%
921
2 minutes
20
Topological insulators (TIs) hold promise for manipulating the magnetization of a ferromagnet (FM) through the spin-orbit torque (SOT) mechanism. However, integrating TIs with conventional FMs often leads to significant device-to-device variations and a broad distribution of SOT magnitudes. In this work, we present a scalable approach to grow a full van der Waals FM/TI heterostructure by molecular beam epitaxy, combining the charge-compensated TI (Bi,Sb)Te with 2D FM FeGeTe (FGT). Harmonic magnetotransport measurements reveal that the SOT efficiency exhibits a non-monotonic temperature dependence and experiences a substantial enhancement with a reduction of the FGT thickness to 2 monolayers. Our study further demonstrates that the magnetization of ultrathin FGT films can be switched with a current density of ∼ 10 A/m, with minimal device-to-device variations compared to previous investigations involving traditional FMs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.3c03291 | DOI Listing |
Biochem Biophys Rep
December 2025
Henan University of Chinese Medicine, Zhengzhou, 450046, China.
Introduction: 5-Hydroxymethyl furfural (5-HMF) is a furan compound with a molecular formula of CHO. Studies have found that 5-HMF has many pharmacological effects, such as improving hemorheology, anti-inflammatory, antioxidant activity and anti-myocardial ischemia. Identifying the preventive effect of 5-HMF against ischemic stroke and its possible mechanism was the aim of this investigation.
View Article and Find Full Text PDFNano Lett
September 2025
School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
High-density mirror twin boundaries (MTBs) embedded in two-dimensional (2D) transition metal dichalcogenides (TMDCs) have emerged as fascinating platforms for exploring charge density wave and Tomonaga-Luttinger liquid-related issues. However, the reversible manipulation of high-density MTBs in 2D TMDCs remains challenging. Herein, we report the first fabrication of high-density MTB loops in ultrathin 1T-NiTe on the SrTiO(001) substrate, by postannealing as-grown 1T-NiTe under Te-deficient conditions.
View Article and Find Full Text PDFRadiother Oncol
September 2025
Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland, UK.
Introduction: Preclinical evidence has demonstrated the potential of FLASH radiotherapy (FLASH-RT) to spare normal tissues compared to conventional (CONV) exposures. Most FLASH studies have used ultra-high dose rate (>40 Gy/sec) electrons and protons whilst comparatively few studies have reported photon FLASH responses. Given the widespread use of photons clinically, there is a need to characterise the FLASH effect using photons.
View Article and Find Full Text PDFNanoscale Adv
August 2025
Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum DresdenRossendorf 01328 Dresden Germany
Ion irradiation has routinely been used to create defects or even pattern two-dimensional (2D) materials. For efficient defect engineering, that is, choosing the proper ion fluence to achieve the desired concentration of defects, it is of paramount importance to know the probability of creating defects as a function of ion energy. Atomistic simulations of ion impacts on 2D targets can provide such information, especially for free-standing systems, but in the case of supported 2D materials, the substrate can strongly affect defect production.
View Article and Find Full Text PDFChem Sci
September 2025
Department of Chemistry, University of Hawai'i at Manoa Honolulu HI 96822 USA
By connecting laboratory dynamics with cosmic observables, this work highlights the critical role of reactions between highly reactive species in shaping the molecular inventory of the interstellar medium and opens new windows into the spectroscopically elusive corners of astrochemical complexity. The gas phase formation of distinct CH isomers is explored through the bimolecular reaction of tricarbon (C, XΣ ) with the vinyl radical (CH, XA') at a collision energy of 44 ± 1 kJ mol employing the crossed molecular beam technique augmented by electronic structure and Rice-Ramsperger-Kassel-Marcus (RRKM) calculations. This barrierless and exoergic reaction follows indirect dynamics and is initiated by the addition of tricarbon to the radical center of the vinyl radical forming a symmetric doublet collisional complex (CCCCHCH).
View Article and Find Full Text PDF