Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Water quality ecosystem service (ES) modeling tools help inform freshwater management across landscapes. However, the validity of such models depends on the availability of water quality data for validation and calibration, limiting their application in regions where monitoring is limited. This study presents a methodological framework that combines machine learning (ML) and spatial extrapolation to enhance ES modeling in data-scarce contexts (https://github.com/LSU-EPG/Puerto-Rico-ES-Project/tree/main/Data_Scarcity_Framework). Focusing on Puerto Rico, we leverage ML to reconstruct temporal gaps in nutrient trends. We then use ML to apply this reconstructed data to automate calibration and validation of nutrient retention ES models. We transfer validated parameters to unmonitored catchments using hydrogeological similarity. Our results demonstrate that ML preserves critical patterns in nutrient dynamics, while using calibrated parameters across hydrologically similar basins yields accurate predictions in ungauged watersheds. Our framework enhances ES model scalability, offering a tool to inform evidence-based water quality management in data-limited regions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2025.180388DOI Listing

Publication Analysis

Top Keywords

water quality
16
machine learning
8
calibration validation
8
quality ecosystem
8
ecosystem service
8
learning long-term
4
long-term calibration
4
water
4
validation water
4
quality
4

Similar Publications

Mitigative effects of carboxymethyl chitosan on the deterioration of gliadin tractility in frozen rice dough during frozen storage.

Food Chem X

August 2025

School of Life Science, Anqing Normal University, Jixian North Road1318, Yixiu District, Anqing 246052, Anhui Province, China.

Frozen storage deteriorates the texture and digestibility of frozen rice dough by damaging gliadin structure and starch integrity. This study investigated carboxymethyl chitosan (CMCh) and sodium carboxymethyl cellulose (CMCNa) as cry-oprotectants to mitigate these effects. Comprehensive analysis utilizing nuclear magnetic resonance (NMR), texture profile analysis (TPA), dynamic contact angle measurement (DCAT21), reversed-phase high-performance liquid chromatography (RP-HPLC), and circular dichroism (CD) demonstrated that 1.

View Article and Find Full Text PDF

Background And Aim: The search for sustainable and cost-effective protein alternatives to soybean meal in livestock diets has led to the exploration of legumes such as faba beans [FBs] ( L.). This study investigated the effects of dietary inclusion of FBs on carcass traits, meat quality, and selected blood parameters in Awassi lambs.

View Article and Find Full Text PDF

Background: Integrated mode proton imaging is a clinically accessible method for proton radiographs (pRads), but its spatial resolution is limited by multiple Coulomb scattering (MCS). As the amplitude of MCS decreases with increasing particle charge, heavier ions such as carbon ions produce radiographs with better resolution (cRads). Improving image resolution of pRads may thus be achieved by transferring individual proton pencil beam images to the equivalent carbon ion data using a trained image translation network.

View Article and Find Full Text PDF

In this study, the systematic investigation focused on how varying power levels of ultrasonic (US) pretreatment, when integrated with electrohydrodynamic (EHD) drying, influence the physicochemical properties of yam. Yam samples were subjected to ultrasonic pretreatment at 30 °C for 30 min using power levels of 0 W (Control), 150 W, 180 W, 210 W, 240 W, and 270 W, respectively, followed by drying in an EHD system. During the drying process, a range of metrics were measured, including moisture content, average drying rate, color change, as well as rehydration capacity.

View Article and Find Full Text PDF

Purpose: The development of on-board cone-beam computed tomography (CBCT) has led to improved target localization and evaluation of patient anatomical change throughout the course of radiation therapy. HyperSight, a newly developed on-board CBCT platform by Varian, has been shown to improve image quality and HU fidelity relative to conventional CBCT. The purpose of this study is to benchmark the dose calculation accuracy of Varian's HyperSight cone-beam computed tomography (CBCT) on the Halcyon platform relative to fan-beam CT-based dose calculations and to perform end-to-end testing of HyperSight CBCT-only based treatment planning.

View Article and Find Full Text PDF