98%
921
2 minutes
20
Cardiovascular disease remains a major global health challenge, with dyslipidaemia being a key modifiable risk factor. While low density lipoprotein cholesterol (LDL-C) is the primary target for lipid-lowering therapies, recent evidence highlights the importance of triglycerides, apolipoprotein B (apoB), and lipoprotein(a) [Lp(a)] for residual cardiovascular risk. Current lipid-lowering therapies target key enzymes and proteins involved in cholesterol and lipid metabolism. Statins inhibit HMG-CoA reductase, reducing cholesterol biosynthesis and increasing LDL receptor (LDLR) expression in the liver. Bempedoic acid inhibits ATP citrate lyase, the enzyme upstream of HMG-CoA reductase in the mevalonate pathway, offering an alternative to statins by selectively acting in the liver, minimizing muscle-related side effects. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors [evolocumab, alirocumab, inclisiran, lerodalcibep, and enlicitide decanoate (MK0616)] prevent LDLR degradation, while ezetimibe limits intestinal cholesterol absorption. Emerging lipid-lowering targets include angiopoietin-like 3 protein (ANGPTL3) and apolipoprotein C-III (apoC-III). Inhibiting ANGPTL3 reduces both triglycerides and LDL-C independently of LDL receptor. Inhibition of apoC-III unleashes lipoprotein lipase (LPL) activity, promoting triglyceride-rich particle catabolism, even in complete LPL deficiency. Cholesteryl ester transfer protein (CETP) inhibition also increases the catabolism of apoB-containing lipoproteins. Ongoing research into strategies to reduce Lp(a), primarily but not exclusively through antisense therapies, aims to demonstrate the cardiovascular benefits of targeting this lipoprotein. In summary, the field of targets for lipid and lipoprotein lowering is constantly evolving and offers new strategies for patients resistant to current therapies or with specific lipid profile abnormalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/eurheartj/ehaf606 | DOI Listing |
Biochem Biophys Res Commun
September 2025
Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba, 260-8675, Japan. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC) cells exhibit high metabolic flexibility, enabling survival under glucose limitation by using alternative fuels such as fatty acids. Lipophagy, a selective form of autophagy targeting lipid droplets (LDs), supports mitochondrial respiration during such nutrient stress. Our previous study demonstrated that the LSD1 inhibitor SP-2509 disrupts lipophagy independently of LSD1 inhibition, leading to LD accumulation and ATP depletion in glycolysis-suppressed PDAC cells.
View Article and Find Full Text PDFChem Biol Interact
September 2025
College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China. Electronic address:
Ferroptosis is an iron-dependent form of regulated cell death characterized by lethal lipid peroxidation and implicated in various human diseases. Despite intensive research, clinically applicable ferroptosis inhibitors remain unavailable. In this study, we identify formoterol, a β-adrenergic agonist widely used to treat asthma and COPD, as a potent and selective ferroptosis inhibitor through scaffold-based screening of FDA-approved drugs.
View Article and Find Full Text PDFFish Shellfish Immunol
September 2025
State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, State Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, Universi
Metaflammation, a chronic immune response triggered by metabolic dysregulation, poses significant threats to gut-liver homeostasis in aquaculture species. To understand the progression of metaflammation, it is crucial to examine the role of SOCS8 deficiency in socs8 zebrafish, as this species may serve as a disease model for metabolic disorders due to the gradual dysregulation of immunity, metabolism, and the gut microbiota observed in them. This study examines the immune-metabolic crosstalk in grass carp, subjected to soybean meal-induced enteritis, and in socs8 zebrafish under genetic and dietary stress.
View Article and Find Full Text PDFEur J Pharm Sci
September 2025
Department of Neurology, Massachusetts General Hospital, Boston, MA, 02129, USA; Neuroscience Program, Harvard Medical School, Boston, MA, 02129, USA. Electronic address:
Glioblastoma (GBM) is a highly malignant brain tumor with limited treatment options and poor prognosis. GBM exhibits resistance to conventional therapies, including temozolomide (TMZ), radiotherapy, and immunotherapy, partly due to immunosuppressive mechanisms such as programmed death-ligand 1 (PD-L1) overexpression. To address these challenges, we developed TMZ-loaded nanostructured lipid carriers (NLCs) conjugated with anti-PD-L1 single-chain variable fragments (scFv) for dual chemo-immunotherapy.
View Article and Find Full Text PDFSurv Ophthalmol
September 2025
Department of Ophthalmology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang 261041, China.
Lipid metabolism plays a critical role in maintaining normal physiological functions and is strongly linked to the pathogenesis of ocular vascular diseases. This review examines how disorders of lipid metabolism drive progression in ocular vascular diseases, including diabetic retinopathy, age-related macular degeneration, retinal vascular occlusive diseases, and retinopathy of prematurity. These disorders are classified as a related group due to their common feature of impaired ocular vascularization.
View Article and Find Full Text PDF