Spin bond order driven by extended repulsive interactions in doped graphene.

J Phys Condens Matter

Faculty of Energy Science, Kim Il Sung University, Ryongnam-Dong, Taesong District, Pyongyang, Ryongnam-Dong, Korea (the Democratic People's Republic of).

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We use the truncated-unity functional renormalization group (TUFRG) to study many-body instabilities of correlated electrons in graphene doped near the van Hove singularity (VHS). The system is described by an extended Hubbard model including several Coulomb repulsions between neighboring sites. With the repulsion parameters, which turn out to be suitable for low-energy consideration of graphene, we find a spin-bond-order phase in the vicinity of the VHS. This phase gives way to a spin-density-wave phase when involving a weak additional screening. The ground-state phase diagram is presented in the space of the doping level and the screening parameter. We describe in detail both of these spin-ordered states by using recently developed TUFRG + MF scheme, i.e., a combined approach of TUFRG and mean-field (MF) theory. The collinear states are energetically preferable in both cases of the spin bond order and the spin-density wave. But if the third-nearest-neighbor hopping is absent, these spin orders become chiral. The band structures of two collinear spin-ordered states are presented, revealing the metallic behavior of the system.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ae010eDOI Listing

Publication Analysis

Top Keywords

spin bond
8
bond order
8
spin-ordered states
8
order driven
4
driven extended
4
extended repulsive
4
repulsive interactions
4
interactions doped
4
doped graphene
4
graphene truncated-unity
4

Similar Publications

Synthesis and Reactivity of a Crystalline Zinc-cAAC Radical.

Angew Chem Int Ed Engl

September 2025

Key Laboratory of Organic Synthesis of Jiangsu Province & State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China.

Reaction of LZnI [L = BuC(N-DIPP), DIPP = 2,6-Pr-CH] with KC in the presence of cyclic (alkyl)(amino)carbene (cAAC) affords a stable radical complex [LZn(cAAC)] (3). Single-crystal structural analysis of 3 shows a short Zn─C bond and concomitant elongation of C─N bond within the cAAC ligand, indicating a significant π-backbonding from the metal to the cAAC ligand. EPR spectroscopy and DFT calculations reveal that the spin density is mainly localized on the carbenic carbon atom, with a small portion on the zinc center.

View Article and Find Full Text PDF

Quinoline as a Photochemical Toolbox: From Substrate to Catalyst and Beyond.

Acc Chem Res

September 2025

Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.

ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.

View Article and Find Full Text PDF

First-principles insights into structure and magnetism in ultra-small tetrahedral iron oxide nanoparticles.

Phys Chem Chem Phys

September 2025

Masaryk University, Faculty of Science, Department of Chemistry, Kotlářská 2, Brno, 611 37, Czech Republic.

Structural and magnetic properties of ultra-small tetrahedron-shaped iron oxide nanoparticles were investigated using density functional theory. Tetrahedral and truncated tetrahedral models were considered in both non-functionalized form and with surfaces passivated by pseudo-hydrogen atoms. The focus on these two morphologies reflects their experimental relevance at this size scale and the feasibility of performing fully relaxed, atomistically resolved first-principles simulations.

View Article and Find Full Text PDF

Resonant three-photon ionization spectroscopy has been used to study the late 4d and 5d transition metal carbides RuC, RhC, OsC, IrC, and PtC. These species, like most diatomic transition metals with open nd subshells, exhibit an exceptionally high density of states near the ground separated atom limit. Spin-orbit and nonadiabatic interactions provide a means for the molecules to rapidly dissociate as soon as the bond dissociation energy (BDE) is exceeded.

View Article and Find Full Text PDF

The role of electronic spin in electrocatalysis has led to the emerging field of "spin-dependent electrocatalysis". While spin effects in individual active sites have been well understood, spin coupling among multiple sites remains underexplored in electrocatalysis, which will bring forth new active sites and mechanisms. In this work, we propose a general theory to understand the spin coupling in electrocatalysis.

View Article and Find Full Text PDF