Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lithium-ion batteries(LIBs)have been widely used and its safety has attracted much attention. Separators are an essential part of ensuring the safety of LIBs by both allowing ion transport and preventing direct electrical contact between the cathode and anode, Herein, a unique temperature-regulating separator that is thermally stimuli-responsive is designed. A thermosensitive composite separator was ingeniously crafted by filling hollow halloysite that followed by encapsulation with a phase change materials (PCMs) and a bio-adhesive polydopamine with a high-temperature-resistant poly (arylene ether nitriles) polymer. The enthalpy of the separator spans a broad range of 3-12 J g, enabling composite separator to effectively alleviate the internal temperature escalation in LIBs. Under harsh conditions, the heat generated within the battery triggers the melting of the encapsulated PCM. This process absorbs a substantial amount of heat, thereby preventing a significant temperature increase. Moreover, separators demonstrate superior electrochemical performance compared to commercial polyolefin separators. PCM-based separator hold promise for mitigating safety hazards associated with thermal runaway in batteries. This innovative approach offers valuable insights for the development of multifunctional separators aimed at enhancing the safety of LIBs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2025.138825DOI Listing

Publication Analysis

Top Keywords

thermal runaway
8
safety libs
8
composite separator
8
separators
5
separator
5
thermoregulating phase-change
4
phase-change composite
4
composite separators
4
separators thermal
4
runaway suppression
4

Similar Publications

High Performance Sulfide Solid-State Battery Electrolytes Regulation Mechanism: A Review.

Angew Chem Int Ed Engl

September 2025

College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China.

Sulfide solid electrolytes (SEs) exhibit excellent ionic conductivity and good mechanical properties, but their poor air stability and solid-solid contact performance seriously hinder the wide application of sulfide all-solid-state batteries (ASSBs). Herein, this paper reviews the history and the major breakthroughs in the development of sulfide SEs. The theories of hard-soft-acid-base theory and glass structure theory, as well as several strategies to improve the chemical stability of sulfide SEs, are discussed emphatically.

View Article and Find Full Text PDF

Fe-X (X=C, P, S) atom pair-decorated g-CN monolayers for sensing toxic thermal runaway gases in lithium-ion batteries: A DFT Study.

Environ Res

September 2025

Jiangxi Provincial Key Laboratory of High-Performance Steel and Iron Alloy Materials,Jiangxi University of Science and Technology, Ganzhou 34100, China; School of Metallurgy Engineering, Jiangxi University of Science and Technology, Ganzhou 34100, China. Electronic address:

The thermal runaway of lithium-ion batteries (LIBs) releases a mixture of toxic and explosive gases, posing severe safety risks. High-performance sensors are critical for the early detection of these thermal runaway gases (TRGs) to prevent accident escalation. Herein, we systematically investigate Fe-X (X=C, P, S) atomic pair-modified g-CN (FCN, FPN, FSN) monolayers as potential sensing materials for six TRGs (CO, CO, H, CH, CH, and CH) using first-principles calculations.

View Article and Find Full Text PDF

Synergistic Microstructure and Thermal Regulation via Multifunctional Flame-Retardant Separator Design for High-Safety Lithium Metal Batteries.

ACS Appl Mater Interfaces

September 2025

Hebei Engineering Research Center of Advanced Energy Storage Technology and Equipment, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.

Lithium metal batteries (LMBs) are expected to increase energy density due to the high capacity and low electrode potential of lithium metal. However, lithium dendrite growth and organic liquid electrolytes exacerbate the risk of thermal runaway. To improve the safety of the battery, a multifunctional flame-retardant separator was developed through the synergistic effect of decabromodiphenyl ethane (DBDPE)/AlO nanoparticle composite modification.

View Article and Find Full Text PDF

Efficient and flame-retardant thermal management of lithium-ion batteries (LIBs) is drawing increasing attention. Herein, we report a mammal-skin-inspired self-adaptive hygroscopic nanocomposite cooling membrane that dissipates heat from LIBs via moisture desorption and subsequently recovers its cooling capacity through spontaneous moisture absorption from ambient air. The multifunctional cooling membrane, comprising hygroscopic salt, graphene oxide, active carbon fiber, an anticorrosion copper frame, and a porous membrane, is fabricated and systematically characterized, exhibiting both outstanding cooling performance and excellent flame retardancy.

View Article and Find Full Text PDF

Deep intra-slab rupture and mechanism transition of the 2024 M 7.4 Calama earthquake.

Nat Commun

August 2025

Department of Structural and Geotechnical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.

While subduction zone hazard is dominated by the megathrust, intermediate-depth (70-300 km) earthquakes within the slab can likewise have catastrophic impacts. Their physics remains enigmatic, with suggested mechanisms including dehydration embrittlement and thermal runaway. Here, we investigate the 2024 Chile, M 7.

View Article and Find Full Text PDF