Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

While subduction zone hazard is dominated by the megathrust, intermediate-depth (70-300 km) earthquakes within the slab can likewise have catastrophic impacts. Their physics remains enigmatic, with suggested mechanisms including dehydration embrittlement and thermal runaway. Here, we investigate the 2024 Chile, M 7.4 intermediate-depth earthquake and compare the rupture extent with temperature conditions from thermo-mechanical models. We record regional geodetic co-seismic deformation and high-resolution seismicity associated with this type of event. Our analyses reveal a complex rupture spanning an exceptional depth range, with distinct asperities propagating deep into the subducting lithosphere. Comparison with thermal models shows that while the rupture initiated within the cold slab core, it extended well beyond the ~650 °C isotherm that typically delineates the boundary for efficient serpentine dehydration. We suggest that the rupture likely initiated with dehydration embrittlement within the cold core but then propagated into the warmer regions through shear thermal runaway. This implies a transition of mechanisms that facilitates large-scale rupture and activates typically aseismic, high-temperature slab regions. Our findings highlight the importance of considering interactions between rupture mechanisms as well as slab thermal and compositional settings to better understand the processes governing intermediate-depth earthquakes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12398501PMC
http://dx.doi.org/10.1038/s41467-025-63480-5DOI Listing

Publication Analysis

Top Keywords

dehydration embrittlement
8
thermal runaway
8
rupture initiated
8
rupture
7
deep intra-slab
4
intra-slab rupture
4
rupture mechanism
4
mechanism transition
4
transition 2024
4
2024 calama
4

Similar Publications

Deep intra-slab rupture and mechanism transition of the 2024 M 7.4 Calama earthquake.

Nat Commun

August 2025

Department of Structural and Geotechnical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.

While subduction zone hazard is dominated by the megathrust, intermediate-depth (70-300 km) earthquakes within the slab can likewise have catastrophic impacts. Their physics remains enigmatic, with suggested mechanisms including dehydration embrittlement and thermal runaway. Here, we investigate the 2024 Chile, M 7.

View Article and Find Full Text PDF

Double seismic zones (DSZs) are a feature of some subducting slabs, where intermediate-depth earthquakes (~70-300 km) align along two separate planes. The upper seismic plane is generally attributed to dehydration embrittlement, whereas mechanisms forming the lower seismic plane are still debated. Thermal conductivity of slab minerals is expected to control the temperature evolution of subducting slabs, and therefore their seismicity.

View Article and Find Full Text PDF

Stress drop is an earthquake property indicative for the characteristic relation of slip to fault dimension. It is furthermore affected by fault strength, fault topography, the presence of fluids, rupture size, slip, and velocity. In this article, the stress drop image of an entire subduction zone, namely for the seismically highly active northernmost part of Chile, is combined with mapped b-values and their corresponding magnitude distribution in order to better constrain the conditions under which earthquakes of different provenances may nucleate.

View Article and Find Full Text PDF

Lithospheric delamination as the driving mechanism of intermediate-depth seismicity in the Bucaramanga Nest, Colombia.

Sci Rep

December 2023

Chair of Natural Hazards and Mineral Resources, Geology and Geophysics Department, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.

The Bucaramanga nest (BN) is an area of exceptionally strong intermediate-depth seismicity localized in a narrow zone at 150-170 km depth beneath the continental plate in Colombia. To explain the very unusual mantle seismicity cluster in this area, we built a seismic velocity model in the vicinity of BN with the use of local earthquake tomography and developed a numerical hydromechanical model. Our seismic model shows a strong high-velocity anomaly at 130-167 km coinciding with the BN seismicity.

View Article and Find Full Text PDF

A model for intermediate-depth earthquakes of subduction zones is evaluated based on shear localization, shear heating, and runaway creep within thin carbonate layers in an altered downgoing oceanic plate and the overlying mantle wedge. Thermal shear instabilities in carbonate lenses add to potential mechanisms for intermediate-depth seismicity, which are based on serpentine dehydration and embrittlement of altered slabs or viscous shear instabilities in narrow fine-grained olivine shear zones. Peridotites in subducting plates and the overlying mantle wedge may be altered by reactions with CO-bearing fluids sourced from seawater or the deep mantle, to form carbonate minerals, in addition to hydrous silicates.

View Article and Find Full Text PDF