Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

High-entropy alloys (HEAs) have attracted considerable attention due to their exceptional properties and outstanding performance across various applications. However, the vast compositional space and complex high-dimensional atomic interactions pose significant challenges in uncovering fundamental physical principles and effectively guiding alloy design. Traditional experimental approaches, often reliant on trial-and-error methods, are time-consuming, cost-prohibitive, and inefficient. To accelerate progress in this field, advanced simulation techniques and data-driven methodologies, particularly machine learning (ML) with a particular interest in nanoscale phenomena, have emerged as transformative tools for composition design, property prediction, and performance optimization. By leveraging extensive materials databases and sophisticated learning algorithms, ML facilitates the discovery of intricate patterns that conventional methods may overlook, and enables the design of HEAs with targeted properties. This review paper provides a comprehensive overview of recent advancements in ML applications for HEAs. It begins with a brief introduction of the fundamental principles of HEAs and ML methodologies, including key algorithms, databases, and evaluation metrics. The critical role of materials representation and feature engineering in ML-driven HEA design is thoroughly discussed. Furthermore, state-of-the-art developments in the integration of ML with HEA research, particularly in composition optimization, property prediction, and phase identification, are systematically reviewed. Special emphasis is placed on cutting-edge deep learning techniques, such as generative models and computer vision, which are revolutionizing the field. This study explores the application of machine learning (ML) in developing highly accurate ML interatomic potentials (MLIPs) for molecular dynamics (MD) simulations. These MLIPs have the potential to enhance the accuracy and efficiency of simulations, enabling a more precise representation of the fundamental physics governing high-entropy alloys (HEAs) at the atomic level. A critical discussion is provided, addressing both the potential advantages and the inherent limitations of this approach. This review aims to provide insights into the future directions of ML-driven HEA research, offering a roadmap for advancing material design through data-driven innovation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5nr01562fDOI Listing

Publication Analysis

Top Keywords

machine learning
12
high-entropy alloys
12
alloys heas
8
property prediction
8
ml-driven hea
8
design
6
learning
5
heas
5
applications machine
4
learning high-entropy
4

Similar Publications

Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.

View Article and Find Full Text PDF

Study Objective: Accurately predicting which Emergency Department (ED) patients are at high risk of leaving without being seen (LWBS) could enable targeted interventions aimed at reducing LWBS rates. Machine Learning (ML) models that dynamically update these risk predictions as patients experience more time waiting were developed and validated, in order to improve the prediction accuracy and correctly identify more patients who LWBS.

Methods: The study was deemed quality improvement by the institutional review board, and collected all patient visits to the ED of a large academic medical campus over 24 months.

View Article and Find Full Text PDF

Background: In-hospital cardiac arrest (IHCA) remains a public health conundrum with high morbidity and mortality rates. While early identification of high-risk patients could enable preventive interventions and improve survival, evidence on the effectiveness of current prediction methods remains inconclusive. Limited research exists on patients' prearrest pathophysiological status and predictive and prognostic factors of IHCA, highlighting the need for a comprehensive synthesis of predictive methodologies.

View Article and Find Full Text PDF

Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.

View Article and Find Full Text PDF

Objective: To explore B cell infiltration-related genes in endometriosis (EM) and investigate their potential as diagnostic biomarkers.

Methods: Gene expression data from the GSE51981 dataset, containing 77 endometriosis and 34 control samples, were analyzed to detect differentially expressed genes (DEGs). The xCell algorithm was applied to estimate the infiltration levels of 64 immune and stromal cell types, focusing on B cells and naive B cells.

View Article and Find Full Text PDF