98%
921
2 minutes
20
In this paper, a systematic study on performance degradation of a 0.18 μm BCD-process DCAP (Direct connection to the output CAPacitor) power chip under a total-dose radiation environment is carried out. The effects of total-dose radiation on the electrical characteristics of an MOS device are analyzed through device-level simulation. Based on the simulation results, a total-dose fault injection model is established and applied to a circuit-level simulation of the DCAP power chip. Our simulation modeling and analysis results show that total-dose radiation degrades output voltage accuracy and switching frequency, to which the bandgap reference circuit is identified as the most sensitive module. The findings presented in this paper provide theoretical support for total-dose radiation hardening designs for the DCAP power chip.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12388713 | PMC |
http://dx.doi.org/10.3390/mi16080917 | DOI Listing |
Adv Mater
September 2025
College of Integrated Circuits & Micro-Nano Electronics, Fudan University, Shanghai, 200433, China.
High-operating-temperature (HOT) mid-wavelength and long-wavelength infrared photodetectors have emerged as critical enablers for eliminating bulky cryogenic cooling systems, offering transfromative potential in developing compact, energy-efficient infrared technologies with reduced size, weight, power, and cost. Focusing on infrared photodiodes, this review first discusses the fundamental mechanisms limiting performance at elevated operating temperatures. Subsequently, the progress in conventional epitaxial semiconductors, such as HgCdTe, InAsSb, and III-V type-II superlattice is reviewed, highlighting the evolution of device architectures designed to effectively suppress dark currents and approach background-limited performance.
View Article and Find Full Text PDFMicrosyst Nanoeng
September 2025
Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering, and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
Terahertz communication systems demand versatile devices capable of simultaneously controlling propagating waves and surface plasmon polaritons (SPPs) in far-field (FF) and near-field (NF) channels, yet existing solutions are constrained by volatile operation, single-function limitations, and the inability to integrate NF and FF functionalities. Here, we present a nonvolatile reconfigurable terahertz metasurface platform leveraging the phase-change material GeSbTe(GST) to achieve on-demand dual-channel modulation-a first in the terahertz regime. By exploiting the stark conductivity contrast of GST between amorphous and crystalline states, our design enables energy-efficient switching between NF-SPP manipulation and FF-wavefront engineering without requiring continuous power input.
View Article and Find Full Text PDFLab Chip
September 2025
Department of Electrical & Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong.
Traditional biophysical cytometry has been limited by its low-dimensional phenotyping characteristics, often relying on only one or a few cellular biophysical phenotypes as readouts. This has perpetuated the perception that biophysical cytometry lacks the power to determine cellular heterogeneity. Here, we introduce a multimodal biophysical cytometry platform, termed quantitative phase morpho-rheological (QP-MORE) cytometry, which simultaneously captures a collection of high-resolution biophysical and mechanical phenotypes of single cells at ultrahigh throughput (>10 000 cells per s).
View Article and Find Full Text PDFLab Chip
September 2025
Institute for Life and Medical Sciences, Kyoto University, Japan.
Multiplexed fluid control is a demanding task in various studies in life sciences and bioengineering. Herein, we present open-source microfluidic sequence automation (MiSA) that offers flexible and multiplexed fluid control for various applications, providing constant flow pressure-based feedback control with 10-plex capability and pulsed flow on the order of 100 ms. MiSA was self-contained, including a pressure source, and employed an Arduino Micro to integrate ten solenoid valves, an off-the-shelf pressure regulator, and a flow sensor to balance cost and reliability.
View Article and Find Full Text PDFSmall Methods
September 2025
Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
The development of planar on-chip micro-batteries with high-capacity electrodes and environmentally friendly and stable architectures is critical for powering the next generation of miniaturized system-on-chip smart devices. However, realizing highly stable micro-batteries remains a major challenge due to complex fabrication processes, electrode degradation during cycling, and the uncontrolled growth of dendrites in metal-based anodes within the confined spaces between electrodes. To address these issues, this study presents an approach that incorporates a 3D porous nickel (Ni) scaffold at the metal anode, offering improved micro-anode stability compared to conventional planar zinc and 3D porous zinc (Zn) scaffolds.
View Article and Find Full Text PDF