Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Epilepsy is a prevalent neurological disorder marked by sudden, brief episodes of excessive neuronal activity caused by abnormal electrical discharges, which may lead to some mental disorders. Most existing deep learning methods for epilepsy detection rely solely on unimodal EEG signals, neglecting the potential benefits of multimodal information. To address this, we propose a novel multimodal model, DistilCLIP-EEG, based on the CLIP framework, which integrates both EEG signals and text descriptions to capture comprehensive features of epileptic seizures. The model involves an EEG encoder based on the Conformer architecture as a text encoder, the proposed Learnable BERT (BERT-LP) as prompt learning within the encoders. Both operate in a shared latent space for effective cross-modal representation learning. To enhance efficiency and adaptability, we introduce a knowledge distillation method where the trained DistilCLIP-EEG serves as a teacher to guide a more compact student model to reduce training complexity and time. On the TUSZ, AUBMC, and CHB-MIT datasets, both the teacher and student models achieved accuracy rates exceeding 97%. Across all datasets, the F1-scores were consistently above 0.94, demonstrating the robustness and reliability of the proposed framework. Moreover, the student model's parameter count and model size are approximately 58.1% of those of the teacher model, significantly reducing model complexity and storage requirements while maintaining high performance. These results highlight the potential of our proposed model for EEG-based epilepsy detection and establish a solid foundation for deploying lightweight models in resource-constrained settings.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2025.3603022DOI Listing

Publication Analysis

Top Keywords

knowledge distillation
8
epilepsy detection
8
eeg signals
8
model
7
distilclip-eeg enhancing
4
enhancing epileptic
4
epileptic seizure
4
seizure detection
4
detection multi-modal
4
learning
4

Similar Publications

The spectacular success of training large models on extensive datasets highlights the potential of scaling up for exceptional performance. To deploy these models on edge devices, knowledge distillation (KD) is commonly used to create a compact model from a larger, pretrained teacher model. However, as models and datasets rapidly scale up in practical applications, it is crucial to consider the applicability of existing KD approaches originally designed for limited-capacity architectures and small-scale datasets.

View Article and Find Full Text PDF

Objectives: To gain an in-depth understanding of the real support priorities and perceptions of caregivers of individuals receiving care with end-stage heart failure regarding hospice care.

Design: A qualitative descriptive approach was employed.

Participants And Setting: Using a purposive sampling approach, 16 primary caregivers of individuals receiving care with end-stage heart failure from a tertiary hospital in Hangzhou, Zhejiang province, were selected as interview participants.

View Article and Find Full Text PDF

Knowledge distillation (KD) aims to transfer knowledge from a large-scale teacher model to a lightweight one, significantly reducing computational and storage requirements. However, the inherent learning capacity gap between the teacher and student often hinders the sufficient transfer of knowledge, motivating numerous studies to address this challenge. Inspired by the progressive approximation principle in the Stone-Weierstrass theorem, we propose expandable residual approximation (ERA), a novel KD method that decomposes the approximation of residual knowledge into multiple steps, reducing the difficulty of mimicking the teacher's representation through a divide-and-conquer approach.

View Article and Find Full Text PDF

Ground Reaction Force Estimation via Time-aware Knowledge Distillation.

IEEE Internet Things J

August 2025

Geometric Media Lab, School of Arts, Media and Engineering and School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281 USA.

Human gait analysis with wearable sensors has been widely used in various applications, such as daily life healthcare, rehabilitation, physical therapy, and clinical diagnostics and monitoring. In particular, ground reaction force (GRF) provides critical information about how the body interacts with the ground during locomotion. Although instrumented treadmills have been widely used as the gold standard for measuring GRF during walking, their lack of portability and high cost make them impractical for many applications.

View Article and Find Full Text PDF

Introduction: To address the challenges of current 4D trajectory prediction-specifically, limited multi-factor feature extraction and excessive computational cost-this study develops a lightweight prediction framework tailored for real-time air-traffic management.

Methods: We propose a hybrid RCBAM-TCN-LSTM architecture enhanced with a teacher-student knowledge distillation mechanism. The Residual Convolutional Block Attention Module (RCBAM) serves as the teacher network to extract high-dimensional spatial features via residual structures and channel-spatial attention.

View Article and Find Full Text PDF