Article Synopsis

  • Early gastric cancer (EGC) is a crucial stage to prevent the transition to advanced gastric cancer (AGC), and understanding its single-cell characteristics may enhance monitoring and treatment outcomes.
  • A single-cell RNA sequencing atlas was created using 184,426 cancer cells from various stages, revealing eight distinct cell lineages and changes in cell composition as the disease progresses.
  • The study identified the role of IL-33 in promoting endothelial cell survival and tumor growth in EGC, highlighting its potential as a predictive marker and therapeutic target.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Early gastric cancer (EGC) represents a critical stage in preventing and controlling the progression from gastritis to advanced gastric cancer (AGC). Therefore, identifying the single-cell characteristics of EGC, particularly the cellular composition of the tumor microenvironment (TME), as well as identifying potential predictive markers and therapeutic targets, could significantly enhance the monitoring of gastric cancer and improve clinical cure rates. We constructed a comprehensive single-cell RNA sequencing atlas for 184,426 high-quality gastric cancer cells from various stages, utilizing clinical biopsies and surgical samples. Our single-cell atlas highlights the cellular and molecular characteristics of EGC. Eight distinct cell lineage states were identified, and it was observed that the number of epithelial cell meta-clusters gradually decreased, while the number of T&NK, B, plasma, fibroblast, myeloid, and endothelial cells increased with disease progression. Certain epithelial subclusters (metaplastic stem-like cells (MSCs), pit mucous-like cells (PMC-like), proliferating cells), T-cell subclusters (T, naive, CD4, T CD8, and CD8 T cells), and endothelial subclusters ( Venous-1 and Artery-2) were found to be increased in EGC. The Venous-1 subcluster was found to express high levels of . Mechanistically, it was revealed that IL-33 enhances the survival and angiogenesis of endothelial cells by upregulating the expression of adhesion proteins CD34 and PECAM1. Patient-derived EGC and AGC organoids were subsequently generated, and it was demonstrated that endothelial-derived IL-33 promoted the growth of both EGC and AGC organoids and . Furthermore, IL-33 was found to increase the expression of KRT17 in EGC organoids. Notably, we also found that high expression of IL-33 was positively correlated with the depth of invasion and malignancy of EGC. This study provides novel insights into the single-cell components involved in EGC and reveals the role of the endothelial subcluster in EGC progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12371260PMC
http://dx.doi.org/10.1002/imt2.70050DOI Listing

Publication Analysis

Top Keywords

gastric cancer
20
egc
10
reveals role
8
role endothelial
8
early gastric
8
characteristics egc
8
endothelial cells
8
egc agc
8
agc organoids
8
cells
7

Similar Publications

Background: Immune checkpoint inhibitors (ICIs) play a pivotal role in the treatment of advanced gastric cancer (GC). However, the biomarkers used to predict ICI efficacy are limited due to their reliance on single or static tumor characteristics. This study aims to develop a machine learning (ML) model that incorporates dynamic changes in clinlabomics data to optimize the predictive accuracy of ICI efficacy.

View Article and Find Full Text PDF

Background: Esophagectomy causes anatomical changes that can lead to rapid food transit and reactive hypoglycemia (RH). Patients are advised on eating patterns postesophagectomy to prevent RH, but its true incidence and the impact of dietary recommendations remain under-researched.

Materials And Methods: Individuals >12 months postesophagectomy were recruited from the National Centre for Oesophageal and Gastric Cancer at St James's Hospital in Dublin, Ireland.

View Article and Find Full Text PDF

In oxaliplatin-resistant gastric cancer (GC), multi-omics profiling combined with organoid libraries reveals altered metabolic pathways associated with chemoresistance. We identify a novel lactylation modification at K115 of Poly(RC)-binding protein 2 (PCBP2K115la), which confers functional oxaliplatin resistance. Mechanistic studies demonstrate that the long non-coding RNA BASP1-AS1 assembles a complex containing Unc-51 Like Autophagy Activating Kinase 1 (ULK1) and lactate dehydrogenase A (LDHA), thereby activating LDHA enzymatic activity to increase lactate production.

View Article and Find Full Text PDF

Protein phosphorylation modification plays an important role in regulating protein activity. Astrocyte elevated gene-1 (AEG-1), an adaptor protein, promotes the progression of various types of cancers by protein-protein interactions. We previously demonstrated that AEG-1 promoted the growth and metastasis of gastric cancer by upregulating the expression of oncogenic eukaryotic translation initiation factor 4E (eIF4E).

View Article and Find Full Text PDF