Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Drought stress reduces growth, yield, and photosynthetic efficiency in pea plants, limiting nutrient uptake and requiring mitigation strategies. Salicylic acid plays a key role in plant development, and pea (Pisum sativum L.) ranks fourth in global production. A pot experiment was conducted to evaluate the effect of salicylic acid on two pea cultivars viz: Super Classic and Madarna, under water stress conditions at the Botanical Garden Research Area, University of Agriculture Faisalabad PARS, in 2021. Salicylic acid was applied as a foliar spray at concentrations of 0 (control), 50 ppm, 100 ppm, and 150 ppm. Drought stress was imposed at two levels: 100% field capacity (FC) and 75% FC. The experiment was conducted in completely randomized design (CRD) with a factorial arrangement and each treatment was replicated three times. The analysis revealed that drought intervals significantly affected various growth indicators, including fresh and dry weights of both shoots and roots, their lengths, physiological pigments such as chlorophyll and carotenoids, ionic contents of Na + , K + , and Ca2 + , and the overall yield. Notably, the application of 150 ppm salicylic acid effectively mitigated the effects of drought stress in pea plants. In conclusion, salicylic acid demonstrated beneficial effects against drought in pea plants by enhancing growth and yield while protecting photosynthetic pigments. Additionally, the Super Classic variety exhibited greater growth compared to Madarna when treated with salicylic acid at the 150 ppm concentration under drought stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12379396PMC
http://dx.doi.org/10.1186/s12870-025-06644-1DOI Listing

Publication Analysis

Top Keywords

salicylic acid
28
drought stress
20
pea plants
12
foliar spray
8
pea pisum
8
pisum sativum
8
growth yield
8
experiment conducted
8
super classic
8
effects drought
8

Similar Publications

A novel label-free NIR aptasensor based on triphenylmethane dyes for rapid detection of salicylic acid.

Anal Methods

September 2025

Henan Linker Technology Key Laboratory, College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, China.

Salicylic acid (SA) is a critical phytohormone involved in plant growth, development, and defense responses, making its precise quantification essential for both agricultural management and environmental monitoring. Here, we report a novel label-free near-infrared aptasensor (NIRApt) for the rapid and sensitive detection of SA, utilizing a rationally selected triphenylmethane (TPM) dye. Through systematic screening, ethyl violet (EV) was identified as the optimal fluorophore, showing pronounced fluorescence enhancement upon binding to a SA-specific aptamer.

View Article and Find Full Text PDF

Nonexpressor of pathogenesis-related genes 1 (NPR1) is a master regulator of salicylic acid (SA)- facilitated plant hormone signaling and plays a crucial role in plant defense through the activation of systemic acquired resistance (SAR). Although like genes are associated with stress responses in a variety of plant species, no thorough genome-wide investigation of these genes has been undertaken in pearl millet (). This study discovered seven -like genes on four pearl millet chromosomes (Chr1, Chr2, Chr4, and Chr6), which exhibit close affinity to NPRs from other plants and have common gene structures, conserved motifs, and domains.

View Article and Find Full Text PDF

Functional analysis of three peroxisomal cinnamate:CoA ligases in salicylic acid biosynthesis of Glycine max.

Plant Physiol Biochem

September 2025

Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China; China-Mozambique "Belt and Road" Joint Laboratory on Smart Agriculture, Jinhua, 321004, China. Electronic address:

Salicylic acid (SA), a phenolic-derived secondary metabolite, serves as a critical signaling molecule in plant defense mechanisms. Contemporary phytochemical studies have identified two distinct biosynthetic pathways for SA production in plants: the isochorismate synthase (ICS)-mediated pathway and the phenylalanine ammonia-lyase (PAL)-dependent pathway. However, the enzymes participating in SA biosynthesis in soybean remain largely unknown.

View Article and Find Full Text PDF

Plants are constantly exposed to environmental changes and must respond carefully to ensure survival and growth. Under high temperatures, many plants exhibit a series of morphological and developmental adjustments, including increased hypocotyl and petiole elongation. These adaptations, collectively termed thermomorphogenesis, promote transpiration and water loss, thereby enhancing evaporative cooling.

View Article and Find Full Text PDF

Salicylic acid (SA), a long-characterized defense hormone, is increasingly recognized for its roles in plant growth and development. However, its involvement in mediating plant growth responses to environmental cues remains less understood. Here, we show that SA negatively affects thermomorphogenic growth in Arabidopsis thaliana.

View Article and Find Full Text PDF