98%
921
2 minutes
20
Antimicrobial resistance (AMR) poses a global healthcare challenge, where overprescription of antibiotics contributes to its prevalence. We have developed a rapid multi-excitation Raman spectroscopy methodology (MX-Raman) that outperforms conventional Raman spectroscopy and enhances specificity. A support vector machine (SVM) model was used to identify 20 clinical isolates of Pseudomonas aeruginosa with an accuracy of 93% using MX-Raman. Antibiotic sensitivity profiles for tobramycin, ceftazidime, ciprofloxacin, and imipenem were generated for the bacterial strains and compared with their Raman spectral signatures using MX-Raman. The 20 clinical strains were distinguished according to AMR profiles. Nine models were assessed for AMR classification performance, and SVM performed best, classifying AMR profiles of each strain with 91-96% accuracy. These data provide the basis for a new rapid clinical diagnostic platform that could screen for bacterial infection and recommend effective antibiotic treatment ahead of confirmation by conventional techniques, improving clinical outcomes and reducing the spread of AMR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12378394 | PMC |
http://dx.doi.org/10.1038/s44259-025-00141-z | DOI Listing |
J Phys Chem Lett
September 2025
Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States.
Carbon dots (CDs) represent a new class of nontoxic and sustainable nanomaterials with increasing applications. Among them, bright and large Stokes-shift CDs are highly desirable for display and imaging, yet the emission mechanisms remain unclear. We obtained structural signatures for the recently engineered green and red CDs by ground-state femtosecond stimulated Raman spectroscopy (FSRS), then synthesized orange CDs with similar size but much higher nitrogen dopants than red CDs.
View Article and Find Full Text PDFInorg Chem
September 2025
Synthesis and Characterization of Innovative Materials, TUM School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching b. München 85748, Germany.
Semiconductors with one-dimensional (1D) substructures are promising for next-generation optical and electronic devices due to their directional transport and flexibility. Representatives of this class include HgPbP-type materials. This study investigates the related semiconductors AgGeP and AgSnP.
View Article and Find Full Text PDFSmall
September 2025
Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany.
Flexible metal-organic frameworks (MOFs) have emerged as a new generation of porous materials and are considered for various applications such as sensing, water or gas capture, and water purification. MIL-88 A (Fe) is one of the earliest and most researched flexible MOFs, but to date, there is a lack in the structural aspects that govern its dynamic behaviour. Here, we report the first crystal structure of DMF-solvated MIL-88 A and investigate the impact of real structure effects on the dynamic behaviour of MIL-88 A (Fe), particularly upon water adsorption.
View Article and Find Full Text PDFSmall
September 2025
School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China.
High-concentration electrolytes (HCEs) face inherent challenges such as high viscosity and diminished ionic conductivity caused by the formation of three-dimensional (3D) anion networks, which limit their practical applications. In this study, it is demonstrated that encapsulating HCEs within metal-organic frameworks (MOFs) effectively disrupts these 3-D networks, resulting in significantly enhanced ionic conductivity. Raman spectroscopy, nuclear magnetic resonance (NMR), and molecular dynamics (MD) simulations reveal a significant reduction in aggregates (AGGs)-state anion within MOF-confined electrolytes, confirming the reconstruction of the solvation environment.
View Article and Find Full Text PDFAnal Chem
September 2025
Department of Laboratory Medicine, Fujian Medical University, Fuzhou 350004, China.
Acute lymphoblastic leukemia (ALL) is the most common hematologic malignancy in children. Current clinical diagnosis primarily relies on invasive detection methods, while molecular subtyping remains a complex and time-consuming process. This study innovatively employed silver nanoparticle-based surface-enhanced Raman spectroscopy (SERS) technology to systematically analyze 116 serum samples, including those with breakpoint cluster region-Abelson (-) fusion genotype, mixed-lineage leukemia (, also known as lysine methyltransferase 2A, ) gene rearrangement subtype, T-lymphoblastic ALL, and healthy controls.
View Article and Find Full Text PDF