98%
921
2 minutes
20
Flexible strain sensors with high sensitivity and stability at high temperatures are significantly desirable for their accurate and long-term signal detection in wearable devices, environment monitoring, and aerospace electronics. Despite the considerable efforts in materials development and structural design, it remains a challenge to develop highly sensitive, flexible strain sensors operating at high temperatures due to the trade-off between sensitivity and stability for the representative sensing materials. Herein, we develop a high-temperature flexible sensor using MoWS alloy films. A pulsed laser is introduced to directly synthesize MoWS patterns with controllable compositions and physical parameters, enabling the realization of flexible sensors without photolithography or transfer procedures. The resultant flexible sensors exhibit a high gauge factor of 97.4, a low strain detection of 4.9 με, and strong tolerance to a temperature of 500 °C. Owing to its superior performance, we develop a wireless acoustic recognition system to distinguish tiny strain signals of tuning forks with a vibration frequency up to 128 Hz under extreme temperature conditions. The laser method for the direct fabrication of MoWS alloy-based flexible sensors holds great potential in the precise detection of strain signals from complex structures at high temperatures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365116 | PMC |
http://dx.doi.org/10.1038/s41378-025-01014-1 | DOI Listing |
Nanotechnology
September 2025
State Key Laboratory of Optoelectronic Materials and Technologies School of Chemistry and Chemical Engineering, Sun Yat-Sen University, No 135, XinGangXi Road, Guangzhou 510275, guangzhou, 510275, CHINA.
Silicon carbide nanowires (SiC NWs) combine the benefits of bulk SiC materials with the properties of low-dimensional nanomaterials. They are known for their excellent mechanical strength and durability, which are critical for their potential applications in high-stress environments and micro-nano functional systems. Here, the mechanical properties and deformation mechanisms of 2H-SiC NWs with rare defects in the [0001] orientation are reported.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China. Electronic address:
Conductive hydrogels have emerged as promising materials for flexible wearable electronics; however, their facile fabrication remains challenging. This study presents an antifreeze, antibacterial, and conductive hydrogel constructed from biomacromolecules sodium carboxymethylcellulose (CMCNa) and polyvinyl alcohol (PVA). The hydrogel was synthesized via a simple one-pot method in an ethylene glycol/water (EG/H₂O) binary solvent system, incorporating lithium chloride (LiCl) and clove essential oil (CEO), followed by a single freeze-thaw cycle.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, China.
Conductive hydrogels have revolutionized wearable electronics due to their biocompatibility and tunable properties. However, it remains a great challenge for hydrogel-based sensors to maintain both conductivity and mechanical integrity in harsh environments. Synergistic dynamic interactions provide a promising strategy to address this issue.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Department of Food Science and Agricultural Chemistry, McGill University, Quebec H9X 3V9, Canada.
Passive daytime radiative cooling (PDRC) offers a sustainable solution to global energy challenges by dissipating heat without energy input. However, conventional PDRC materials face trade-offs between biodegradability, color integration, optical transparency, and mechanical robustness. Herein, a biomimetic, structurally colored PDRC film fabricated via evaporation-induced self-assembly of cellulose nanocrystals (CNCs), betaine, and polyvinyl alcohol was developed.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
August 2025
Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh. Electronic address:
Polymers with multifunctional capabilities are increasingly important for emerging technologies, particularly in applications requiring electro-responsive behavior. Polyelectrolytes, which are charged polymers, are promising candidates for electrically triggered actuators, artificial muscles, biomedicine, and flexible electronics, where modulation of mechanical properties is crucial for maintaining structural integrity and performance. This study employs molecular dynamics simulations to explore how electric fields influence the mechanical behavior of polyelectrolytes.
View Article and Find Full Text PDF