J Mech Behav Biomed Mater
August 2025
Polymers with multifunctional capabilities are increasingly important for emerging technologies, particularly in applications requiring electro-responsive behavior. Polyelectrolytes, which are charged polymers, are promising candidates for electrically triggered actuators, artificial muscles, biomedicine, and flexible electronics, where modulation of mechanical properties is crucial for maintaining structural integrity and performance. This study employs molecular dynamics simulations to explore how electric fields influence the mechanical behavior of polyelectrolytes.
View Article and Find Full Text PDFThere has been growing interest in polymer/carbon nanotube (CNT) composites due to an exceptional enhancement in mechanical, structural, thermal, and electronic properties resulting from a small percentage of CNTs. However, the performance of these composites is influenced by the type of polymer used. PMMA is a polymer of particular interest among many other polymers because of its biomaterial applications due to its biocompatibility, non-toxicity, and non-biodegradability.
View Article and Find Full Text PDFIn this article, Molecular Dynamics (MD) simulation is used to investigate the tensile mechanical properties of functional graded Ni-Al (NiAl) alloy with Ni coating. The grading profile, temperature, crystallographic direction, and concentration of vacancy defects have been varied and corresponding changes in the tensile properties are reported. In general, it has been revealed that functional grading may reduce the ultimate tensile strength (UTS) of this homogeneous alloy but increase Young's modulus (YM).
View Article and Find Full Text PDFSilicon doping is an effective way to modulate the bandgap of graphene that might open the door for graphene to the semiconductor industries. However, the mechanical properties of silicon doped graphene (SiG) also plays an important role to realize its full potential application in the electronics industry. Electronic and optical properties of silicon doped graphene are well studied, but, our understanding of mechanical and fracture properties of the doped structure is still in its infancy.
View Article and Find Full Text PDFGermanene, a two-dimensional buckled hexagonal structure of germanium atoms, has attractive mechanical, optical, thermal and electronic features. Recently it has been reported that covalent bonding between two monolayer germanene sheets leads to the integration of intrinsic magnetism and band gap opening that makes it attractive to future nanoelectronics. In order to use the captivating features of this structure, its mechanical characterization needs to be studied.
View Article and Find Full Text PDFSilicene has become a topic of interest nowadays due to its potential application in various electro-mechanical nanodevices. In our previous work on silicene, fracture stresses of single crystal and polycrystalline silicene have been investigated. Existence of defects in the form of cracks reduces the fracture strength of silicene nanosheets to a great extent.
View Article and Find Full Text PDFThe mechanical properties of indium phosphide (InP) nanowires are an emerging issue due to the promising applications of these nanowires in nanoelectromechanical and microelectromechanical devices. In this study, molecular dynamics simulations of zincblende (ZB) and wurtzite (WZ) crystal structured InP nanowires (NWs) are presented under uniaxial tension at varying sizes and temperatures. It is observed that the tensile strengths of both types of NWs show inverse relationships with temperature, but are independent of the size of the nanowires.
View Article and Find Full Text PDFSilicene, a 2D analogue of graphene, has spurred a tremendous research interest in the scientific community for its unique properties essential for next-generation electronic devices. In this work, for the first time, we present a molecular dynamics (MD) investigation to determine the fracture strength and toughness of nanocrystalline silicene (nc-silicene) sheet of varying grain sizes and pre-existing cracks at room temperature. Our results suggest a transition from an inverse pseudo Hall-Petch to a pseudo Hall-Petch behaviour in nc-silicene at a critical grain size of 17.
View Article and Find Full Text PDF