98%
921
2 minutes
20
Transition metal dichalcogenide (TMD) heterobilayers with type-II band alignment provide a versatile platform for spatially separating electrons and holes, facilitating the formation of interlayer excitons with distinct spin states. While these systems show great potential, the interaction between interlayer exciton spin states and polarization optics is not yet fully understood. Here, the manipulation of interlayer exciton linear polarization is reported in a WS/WSe heterostructure integrated with low-symmetry antiferromagnetism CrOCl. This integration induces symmetry breaking, enabling the observation of spin-dependent polarization optical properties, as revealed by linearly polarized photoluminescence spectroscopy. The results show orthogonal optical anisotropy between spin-singlet and spin-triplet interlayer excitons under linearly polarized optical excitation. Additionally, magnetic field-dependent measurements reveal a polarization angle rotation driven by Berry curvature and geometric phase accumulation, demonstrating dynamic coupling between spin states and linear polarization. These findings advance the understanding of exciton spin dynamics and suggest a promising approach for leveraging spin-polarized optical properties in next-generation spintronic and polarization-sensitive optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202503316 | DOI Listing |
J Phys Chem Lett
September 2025
School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China.
Inverted quantum dot light-emitting diodes (QLEDs) show great promise for next-generation displays due to their compatibility with integrated circuit architectures. However, their development has been hindered by inefficient exciton utilization and charge transport imbalance. Here, we present a strategy for regulating charge-exciton dynamics through the rational design of a multifunctional hole transport layer (HTL), incorporating polyethylenimine ethoxylated (PEIE) as a protective interlayer in fully-solution-processed inverted red QLEDs.
View Article and Find Full Text PDFDue to its sizable direct bandgap and strong light-matter interactions, the preparation of monolayer MoS has attracted significant attention and intensive research efforts. However, multilayer MoS is largely overlooked because of its optically inactive indirect bandgap caused by interlayer coupling. It is highly desirable to modulate and decrease the interlayer coupling so that each layer in multilayer MoS can exhibit a monolayer-like direct-gap behavior.
View Article and Find Full Text PDFSci Adv
September 2025
National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
Two-dimensional (2D) materials offer strong light-matter interaction and design flexibility beyond bulk semiconductors, but an intrinsic limit is the low absorption imposed by the atomic thickness. A long-sought-after goal is to achieve complementary absorption enhancement through energy transfer (ET) to break this limit. However, it is found challenging due to the competing charge transfer (CT) process and lack of resonance in exciton states.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243000, China.
The photocatalytic efficiency of two-dimensional covalent organic frameworks (2D COFs) is governed by the spatial arrangement of donor-acceptor (D-A) moieties, which strongly influences exciton transport. However, precise control over D-A alignment, especially across intra- and interlayer dimensions, remains a key challenge for optimizing singlet oxygen (O) generation. Here, we present a linker geometry-directed approach to modulate D-A organization within perylene diimide (PDI)-based COFs.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
College of Polymer Science and Engineering, State Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, P.R. China.
Designing long-lived excitons in photocatalysts is crucial for efficient charge separation. However, most of the current organic photocatalysts are characterized by a relatively short exciton lifetime within the range of picoseconds due to localized excitons with large binding energies. Herein, we report the design of ultralong-lived excitons with a lifetime exceeding 8000 ps by constructing metallo-quinoline-incorporated covalent organic frameworks (COFs).
View Article and Find Full Text PDF