98%
921
2 minutes
20
Unlabelled: AM1, a native formate-utilizing bacterium, has exhibited limited capacity to tolerate formate. In this study, we employed an adaptive laboratory evolution (ALE) strategy to develop an evolved strain FT3 derived from AM1, with enhanced formate tolerance. When cultivated with a mixture of carbon sources containing 90 mM formate and 30 mM methanol, the FT3 strain exhibited 5.3 times higher optical density (OD) compared to the parental strain. FT3 strain was shown to efficiently utilize both methanol and formate in experiments using C-labeled carbon sources. Furthermore, the mechanism underlying the enhanced formate tolerance in FT3 strain was investigated through a combination of DNA re-sequencing, transcriptome analysis, and ALE-inspired gene manipulation experiments. The FT3 strain was identified as a hypermutant, and its enhanced formate tolerance was attributed to increased formate transport, an improved methanol oxidation pathway, and enhanced formate oxidation and assimilation pathways. In addition, gene overexpression experiments indicated the involvement of genes , , , , , , and in formate tolerance. Notably, the addition of formate resulted in a significant improvement in the generation of NADH and NADPH in the FT3 strain. Moreover, using the FT3 strain as a chassis, an improved 3-hydroxypropionic acid (3-HP) production of 2.47 g/L through fed-batch fermentation was achieved. This study provides an important foundation for further engineering of the evolved strain as an efficient platform for the co-utilization of methanol and formate in the production of reduced chemicals.
Importance: In the present study, we successfully obtained an evolved strain FT3 derived from M. extorquens AM1 with high formate tolerance using the ALE strategy. The FT3 strain was identified as a hypermutant, with its enhanced formate tolerance attributed to increased formate transport, an improved methanol oxidation pathway, and enhanced formate oxidation and assimilation pathways. Through transcriptome analysis and ALE-inspired gene manipulation experiments, we identified several genes that contribute to the FT3 strain's tolerance to formate. The enhanced levels of reducing equivalents and the increased tolerance to 3-HP make FT3 a suitable chassis for 3-HP production, achieving an improved yield of 2.47 g/L through fed-batch fermentation. This study provides an important foundation for further engineering of the evolved strain as an efficient platform for the co-utilization of methanol and formate in the production of reduced chemicals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1128/aem.02560-24 | DOI Listing |
Inorg Chem
September 2025
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
The photocatalytic reduction of carbon dioxide (CO) to chemicals holds significant importance for mitigating the current energy crisis. Rational design of catalytic centers within well-defined structures can effectively enhance the reaction activity and selectivity. In this study, we constructed interrupted zeolitic boron imidazolate frameworks (BIFs) featuring unsaturated coordination at the central Co ion.
View Article and Find Full Text PDFNano Lett
September 2025
School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China.
Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
A hexagonal prism-shaped CuO/SnO heterostructured catalyst with electron-enriched SnO active sites was designed and synthesized. The formation of the CuO/SnO heterointerface and electron-enriched SnO active sites significantly enhanced the catalytic activity and selectivity for HCOO in electrochemical reduction of carbon dioxide (COER), while the well-defined hexagonal prismatic architecture provided catalytic and morphological stability. Consequently, the catalyst delivered a surpassing that of pure SnO by 5 mA cm at -1.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Plant Fiber Material Science Research Center, State Key Laboratory of Advanced Papermaking and Paper-based Materials, South China University of Technology, Guangzhou, 510640, China.
The development of cellulose-based electromagnetic shielding materials is critical for the advancement of sustainable, lightweight, and flexible electronic devices. Most high-performance composites rely on nanocellulose, which is expensive and energy-intensive to produce. In this work, we employ chemically modified conventional eucalyptus pulp fibers (non-nano) to fabricate Janus-structured cellulose/MXene composite papers.
View Article and Find Full Text PDFAdv Mater
September 2025
College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China.
Formic acid (FA) has attracted significant interest as a renewable liquid-phase hydrogen carrier. Hydrogen generation from FA decomposition is essential for the development of hydrogen economy. Designing highly efficient catalysts with different coordination environments for FA dehydrogenation is crucial for fuel-cell applications.
View Article and Find Full Text PDF