98%
921
2 minutes
20
As the Internet of Things (IoT) continues to evolve, a growing number of wireless sensors have been integrated into daily life, posing new challenges to energy supply and communication. Point-to-point dynamic wireless power transfer and communication, enabled by user-based positioning and tracking services, hold great potential in the IoT. Here, we propose a speech-controlled reconfigurable intelligent metasurface (RIS) that translates natural-language commands into dynamically shaped electromagnetic beams by combining speech interaction, low-power RIS control, and a template matching algorithm, supporting real-time data communication and wireless power transfer for both static and moving targets. Unlike conventional RISs that rely on pre-defined control and external processing units, our approach provides the metasurface with visual and linguistic perception capabilities, enabling a paradigm shift from passive reconfiguration to active multimodal intelligence. The experimental results confirm the effectiveness of the speech-controlled RIS, while the measured results demonstrate that the RIS can provide a stable dc output that exceeds 4.61 V on dynamic targets. By enabling intuitive human-device interaction and effectively meeting the power supply requirements of small sensors, the proposed concept demonstrates strong application potential in IoT scenarios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12340224 | PMC |
http://dx.doi.org/10.34133/research.0831 | DOI Listing |
Prog Mol Biol Transl Sci
September 2025
School of Forensic Science, National Forensic Sciences University, Gandhinagar, Gujarat, India.
Ingestible biosensors are a mix of advanced biomedical engineering, digital health and precision pharmacotherapy. These miniaturised electronic devices are encapsulated in biocompatible materials, which operate within gastrointestinal (GI) tract. This enables real-time monitoring of pharmacological and physiological parameters.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Bioengineering, Yildiz Technical University, Istanbul, 34722, Turkey.
Conductive nanocomposite hydrogels (CNHs) represent a promising tool in neural tissue engineering, offering tailored electroactive microenvironments to address the complex challenges of neural repair. This systematic scoping review, conducted in accordance with PRISMA-ScR guidelines, synthesizes recent advancements in CNH design, functionality, and therapeutic efficacy for central and peripheral nervous system (CNS and PNS) applications. The analysis of 125 studies reveals a growing emphasis on multifunctional materials, with carbon-based nanomaterials (CNTs, graphene derivatives; 36.
View Article and Find Full Text PDFSci Robot
September 2025
Nick J. Holonyak Micro and Nanotechnology Laboratory, Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Neuronal control of skeletal muscle function is ubiquitous across species for locomotion and doing work. In particular, emergent behaviors of neurons in biohybrid neuromuscular systems can advance bioinspired locomotion research. Although recent studies have demonstrated that chemical or optogenetic stimulation of neurons can control muscular actuation through the neuromuscular junction (NMJ), the correlation between neuronal activities and resulting modulation in the muscle responses is less understood, hindering the engineering of high-level functional biohybrid systems.
View Article and Find Full Text PDFSci Adv
September 2025
Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.
Turbulence-induced vibrations pose substantial risks to aircraft structural integrity and flight stability, particularly in unmanned aerial vehicles (UAVs), where real-time impact monitoring and lightweight protection are critical. Here, we present a bioinspired twist-hyperbolic metamaterial (THM) integrated with a triboelectric nanogenerator (TENG) for simultaneously impact buffering and self-powered sensing. The THM-TENG protector exhibits tunable stiffness (40 to 4300 newtons per millimeter), ~70% impact energy absorption, and achieves a specific energy absorption of ~0.
View Article and Find Full Text PDFACS Sens
September 2025
Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China.
Accurate strain monitoring in environments with coexisting mechanical deformation and temperature fluctuations─such as solid rocket propellants, battery enclosures, and human ligaments─remains a longstanding challenge for flexible electronics. Conventional strain sensors suffer from significant thermal drift due to the intrinsic temperature dependence of their sensing materials, limiting their reliability in wireless and implantable applications. Here, we report an intrinsically temperature-insensitive, highly sensitive, wireless flexible strain sensor based on near-field communication technology.
View Article and Find Full Text PDF