Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We investigate the benefits of using -photon catalyzed two-mode squeezed coherent (-PCTMSC) state in continuous variable measurement device-independent quantum key distribution (CV-MDI-QKD). To that end, we derive the Wigner characteristic function of the -PCTMSC state and show that the 0-PCTMSC state is a Gaussian state and is an inferior choice as compared to the zero photon catalyzed two-mode squeezed vacuum state for CV-MDI-QKD. We carry out the optimization of the secret key rate with respect to all state parameters, namely variance, transmissivity, and displacement. Contrary to many recent proposals, the results show that zero- and single-photon catalysis operation provides only a marginal benefit in improving the maximum transmission distance. Secondly, we find that displacement offers no benefit in improving CV-MDI-QKD.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.546946DOI Listing

Publication Analysis

Top Keywords

catalysis operation
8
continuous variable
8
variable measurement
8
measurement device-independent
8
device-independent quantum
8
quantum key
8
key distribution
8
catalyzed two-mode
8
two-mode squeezed
8
-pctmsc state
8

Similar Publications

Polytantalotungstates Stabilized Iron Catalysts for Carbonylation of Benzylic C-H Bonds.

Inorg Chem

September 2025

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.

Selective oxidation of benzylic C(sp)-H bonds to ketones is critical to the production of fine chemicals but typically requires toxic/precious metal catalysts under harsh conditions. While iron-based complexes have recently served as catalysts for photocatalytic C-H bond activation, most systems operate via homogeneous catalysis. Developing a light-driven strategy under visible light with O as an oxidant is of major importance.

View Article and Find Full Text PDF

Accelerating iron redox cycling via acetate modification: a ligand engineering for sustainable fenton-like oxidation.

Water Res

September 2025

State Key Laboratory of Soil Pollution Control and Safety, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Future Environment Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China. Electronic address:

Accelerating the rate-limiting surface Fe(III)/Fe(II) redox cycling is pivotal for efficient iron-mediated Fenton-like decontamination, yet conventional reductants (e.g., toxic hydroxylamine, thiosulfate) suffer from secondary toxicity, self-quenching, and heavy metal leaching.

View Article and Find Full Text PDF

Synergetic Electrolyte Chemistry Enables Flame-Retardancy, K-Desolvation, Anti-Corrosion and Wide-Temperature-Tolerance in Potassium-Ion Batteries.

J Am Chem Soc

September 2025

Laboratory of Advanced Materials, Aqueous Battery Center, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Shanghai Wusong Laboratory of Materials Science, College of Smart Materials and Future Energy, Fudan University, Shanghai 200433, China.

Potassium-ion batteries (PIBs) have emerged as an appealing, sustainable and cost-effective candidate for grid-scale energy storage due to abundant K resources and reversible K de/intercalation in graphite anodes (KC, 279 mAh g). However, their practical operation suffers from sluggish kinetics and severe capacity deterioration in traditional carbonate electrolytes. Herein, ethoxy (pentafluoro) cyclotriphosphazene (PFPN) and methyl (2,2,2-trifluoroethyl) carbonate (FEMC) are introduced as cosolvents to rejuvenate conventionally low-concentration (1 M) 1,2-dimethoxyethane (DME)-based electrolytes.

View Article and Find Full Text PDF

Nanogranular films obtained by the soft assembly of atomic clusters feature functional properties that are of interest in a variety of fields, ranging from gas sensing to neuromorphic computing, heterogeneous catalysis and the biomedical sector. Bimetallic nanogranular films, combining a post-transition metal (tin) and a catalytic metal (platinum), were produced using supersonic cluster beam deposition. By operating the cluster source with a double-rod cathode or sintered cathode configuration, completely different nanostructures were obtained.

View Article and Find Full Text PDF

33 Unresolved Questions in Nanoscience and Nanotechnology.

ACS Nano

September 2025

MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.

Significant advances in science and engineering often emerge at the intersections of disciplines. Nanoscience and nanotechnology are inherently interdisciplinary, uniting researchers from chemistry, physics, biology, medicine, materials science, and engineering. This convergence has fostered novel ways of thinking and enabled the development of materials, tools, and technologies that have transformed both basic and applied research, as well as how we address critical societal challenges.

View Article and Find Full Text PDF