Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The phytohormone abscisic acid (ABA) regulates plant responses to environmental stresses, development, and immunity. Under unfavorable conditions, ABA forms a complex with its receptor proteins Pyrabactin Resistance 1 (PYR1)/PYR1-likes (PYLs)/Regulatory Component of ABA Receptors (RCARs), inhibiting Clade A Protein Phosphatases Type 2C (PP2Cs) and releasing Sucrose Non-Fermenting-1-Related Protein Kinase 2s (SnRK2s) from PP2C-mediated inhibition. Rapidly Accelerated Fibrosarcoma (RAF) kinases from the B1, B2, and B3 subgroups phosphorylate and reactivate SnRK2s, initiating ABA responses. While ABA does not significantly activate B-RAFs, their basal activity is essential for initiating ABA signaling. However, the mechanisms sustaining this basal B-RAF activity are not fully understood. In this study, we revealed that Clade A PP2Cs interact with and dephosphorylate a certain number of B3 subgroup RAFs at a conserved serine residue, corresponding to Ser619 in RAF3, within the phosphate-binding loop. A phosphomimicking mutation at this residue, RAF3, failed to bind ATP and exhibited diminished kinase activity in vitro and in vivo. Ser619 in RAF3 is an autophosphorylation site, phosphorylated by recombinant RAF3-KD but not by its substrate SnRK2.6. The RAF3 mutant, abolishing Ser619 autophosphorylation, displayed increased kinase activity in vitro. The B-RAF high-order mutant OK-B3 carrying RAF3 showed enhanced ABA sensitivity compared with those with wild-type RAF3. Thus, PP2C-mediated dephosphorylation and the autophosphorylation of this unique serine residue dynamically regulate ATP binding affinity and tightly control RAF3 activity during various ABA signaling phases. This intricate mechanism ensures rapid RAF-SnRK2 cascade activation during stress while promptly desensitizing RAFs once stress signaling commences.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jipb.70012DOI Listing

Publication Analysis

Top Keywords

kinase activity
12
serine residue
12
basal b-raf
8
abscisic acid
8
aba
8
initiating aba
8
aba signaling
8
ser619 raf3
8
activity vitro
8
raf3
7

Similar Publications

c-Jun N-terminal kinases (JNKs), a subfamily of mitogen-activated protein kinases (MAPKs), are key mediators of cellular responses to environmental stress, inflammation, and apoptotic signals. The three isoforms-JNK1, JNK2, and JNK3 exhibit both overlapping and isoform-specific functions. While JNK1 and JNK2 are broadly expressed across tissues and regulate immune signaling, cell proliferation, and apoptosis, JNK3 expression is largely restricted to the brain, heart, and testis, where it plays a crucial role in neuronal function and survival.

View Article and Find Full Text PDF

Background And Objectives: Deucravacitinib, a first-in-class, oral, selective, allosteric tyrosine kinase 2 inhibitor, demonstrated efficacy across the primary endpoint and all key secondary endpoints in the phase 2 PAISLEY SLE trial in patients with active systemic lupus erythematosus (SLE). Here, we describe 2 phase 3 trials [POETYK SLE-1 (NCT05617677), POETYK SLE-2 (NCT05620407)] which will assess the efficacy and safety of deucravacitinib in patients with active SLE. These phase 3 trials have been designed to replicate the successful elements of the phase 2 trial, including its glucocorticoid-tapering strategy and disease activity adjudication.

View Article and Find Full Text PDF

Discovery of APS03118, a Potent and Selective Next-Generation RET Inhibitor with a Novel Kinase Hinge Scaffold.

J Med Chem

September 2025

Applied Pharmaceutical Science, Inc., Building 10-1, No.2, Jingyuan North Street, BDA, Beijing 100176, China.

This study reports the discovery and preclinical activity of APS03118, a novel selective RET inhibitor featuring a novel tricyclic pyrazolo[3',4':3,4]pyrazolo[1,5-]pyridine hinge-binding scaffold designed to overcome acquired resistance to first-generation selective RET inhibitors (SRIs). By enhancing hydrogen bonding with conserved hinge residues (Glu805, Ala807), APS03118 potently inhibits wild-type RET and diverse resistance mutations, including solvent-front (G810R/S/C), gatekeeper (V804M/L/E), roof (L730I/M), and hinge (Y806C/N/H) variants. In preclinical models, APS03118 induced complete tumor regression in KIF5B-RET and CCDC6-RET V804 M patient-derived xenografts (PDXs) and significantly prolonged survival in an intracranial CCDC6-RET metastasis model.

View Article and Find Full Text PDF

Mutations in the human ADAR gene encoding adenosine deaminase acting on RNA 1 (ADAR1) cause Aicardi-Goutières syndrome 6 (AGS6); a severe auto-inflammatory encephalopathy with aberrant interferon (IFN) induction. AdarΔ2-13 null mutant mouse embryos lacking ADAR1 protein die with high levels of IFN-stimulated gene (ISG) transcripts. In Adar Mavs double mutants also lacking the Mitochondrial antiviral signaling (MAVS) adaptor, the aberrant IFN induction is prevented.

View Article and Find Full Text PDF

Slt2 positively regulates Myb-mediated cellulose utilization in .

mBio

September 2025

Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China.

Unlabelled: Fungal degradation of cellulose facilitates the sustainable harnessing of biosphere energy and carbon cycling. is one of the basidiomycetes with the largest number of hydrolytic enzymes in its genome. The mycelium of degrades cellulose through the production of substantial amounts of cellulase, enabling the absorption of carbon sources and nutrients essential for fruiting body development.

View Article and Find Full Text PDF