98%
921
2 minutes
20
The discovery of intrinsic magnetism in layered van der Waals (vdW) magnets has received intensive attention due to their fundamental importance in low-dimensional magnetism and potential device applications. To date, most vdW magnets contain 3d transition metals. Extending vdW magnetism to 4d and 5d transition metal systems is therefore of great interest as it offers opportunities to explore exotic magnetic behaviors arising from the interplay between electronic correlations and strong spin-orbit coupling (SOC). Here, we report the successful synthesis of a metastable layered vdW triangular lattice crystal, 1T-RhO, through the topochemical reaction from CsRhO single crystals. Electrical transport measurements reveal that 1T-RhO is an insulator, while magnetic susceptibility and alternating current susceptibility confirm the absence of long-range magnetic order or spin glass behavior down to 2 K. Raman spectroscopy indicates fermionic excitations consistent with fractionalized Majorana fermions. Angle-resolved photoemission spectroscopy, supported by hybrid functional calculations, reveals a band gap of about 1.0 eV, further confirming the insulating nature. These results collectively suggest that 1T-RhO is a possible quantum spin liquid (QSL) candidate. Our work not only sheds light on the research fields of 4d and 5d transition metal vdW magnets but also significantly expands the pathways for discovering QSL candidates in metastable materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.5c02189 | DOI Listing |
Adv Mater
September 2025
State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433, China.
Superconductivity and magnetism are two of the most extensively studied ordered systems in condensed matter physics. Recent advancements in the fabrication of van der Waals (vdW) layered materials have significantly advanced the exploration of both fundamental physics and practical applications within their heterostructures. The focus not only lies on the coexisting mechanism between superconductivity and magnetism, but also highlights the potential of these atomically thin layers to serve as crucial components in future superconducting circuits.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2025
Wuhan University, Wuhan University, Wuhan, 430072, CHINA.
Manipulating magnetism in two-dimensional (2D) van der Waals (vdW) materials arouses considerable and ongoing interest in fundamental physics and potential applications in next-generation spintronics. Here, we have investigated the underlying electronic structures of bulk vdW magnets CrTe2 and NaCrTe2, by carrying out high-resolution angle-resolved photoemission spectroscopy (ARPES) studies and first-principles calculations. In CrTe2, strong out-of-plane band dispersions and metallic Fermi surface are observed, accompanied by temperature-dependent ferromagnetic (FM) energy gain behavior which directly confirms its itinerant origin.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.
Layered van der Waals (vdW) materials, characterized by their interlayer vdW gaps, offer exceptional tunability of magnetic properties via intercalation chemistry. A wide range of magnetic behaviors have been observed in nonmagnetic transition-metal dichalcogenides intercalated with magnetic atoms. Beyond the incorporation of magnetic ions, we propose the controlled alkali-ion intercalation of intrinsic vdW magnets as a strategy to probe and manipulate spin populations and exchange interactions within individual magnetic layers.
View Article and Find Full Text PDFACS Nano
September 2025
Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, China.
Superlattices (SLs) based on two-dimensional (2D) van der Waals (vdW) materials, abbreviated as 2D-SLs, have garnered significant attention due to their customizable properties. 2D-SLs can be engineered by mechanical stacking or chemical intercalation to achieve diverse forms of symmetry breaking, resulting in exotic phenomena like the quantum anomalous Hall effect and topological magnetism. Hitherto, broken symmetries in 2D-SLs have been widely produced within lateral planes or three dimensions.
View Article and Find Full Text PDFiScience
September 2025
Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden.
The ability to efficiently control topological magnetism is crucial for advancing technological applications and deepening our understanding of magnetic systems. Although emerging van der Waals (vdW) multiferroics present a promising frontier for energy-efficient spin manipulation, the control of topological magnetism remains challenging due to its scarcity in multiferroics. Here, we demonstrate that highly tunable merons and antimerons emerge in monolayer multiferroic (CCPS).
View Article and Find Full Text PDF