Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hepatocellular carcinoma (HCC) is the most prevalent primary malignant tumor, with sorafenib as the main treatment for advanced cases. However, the development of resistance to sorafenib, often driven by cancer stemness, significantly limits its therapeutic efficacy. Minichromosome maintenance complex component 10 (MCM10), a critical regulator of DNA replication and tumor progression, has been implicated in cancer stemness and therapeutic resistance. This study utilized datasets from TCGA and ICGC alongside in vitro and vivo experiments on clinical HCC tissues and sorafenib-resistant cell lines to evaluate MCM10's role in HCC. The Connectivity Map (CMap) was employed to identify TW-37, a potential gene silencing agent targeting MCM10 transcription. The effects of TW-37 on MCM10 expression, cancer stemness, and sorafenib sensitivity were assessed. Elevated MCM10 expression was observed in sorafenib-resistant HCC cell lines and was associated with poor patient outcomes. MCM10 knockout diminished cancer stemness and restored sorafenib sensitivity in resistant cells. Furthermore, TW-37, identified via CMap, effectively downregulated MCM10, reduced cancer stemness, and enhanced sorafenib efficacy, offering a promising therapeutic approach. MCM10 plays a pivotal role in promoting cancer stemness and sorafenib resistance in HCC. Targeting MCM10 transcription with TW-37 represents a novel strategy to overcome sorafenib resistance and improve therapeutic outcomes in HCC patients.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41417-025-00946-0DOI Listing

Publication Analysis

Top Keywords

cancer stemness
28
targeting mcm10
12
sorafenib resistance
12
sorafenib
8
hepatocellular carcinoma
8
mcm10
8
cell lines
8
mcm10 transcription
8
mcm10 expression
8
stemness sorafenib
8

Similar Publications

Cancer stem cells in focus: Deciphering the dynamic functional landscape of stemness in cancer.

Biochim Biophys Acta Rev Cancer

September 2025

Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom. Electronic address:

Cancer stem cells (CSCs) are central to tumour initiation, progression, and relapse, yet their dynamic and adaptive nature hampers therapeutic targeting. Once viewed as a fixed subpopulation, CSCs are now recognised as a fluid functional state that tumour cells can enter or exit, driven by intrinsic programs, epigenetic reprogramming, and microenvironmental cues. This plasticity complicates identification due to inconsistent marker expression and enables resistance, dormancy, and metastasis.

View Article and Find Full Text PDF

Obesity is strongly associated with triple-negative breast cancer (TNBC). A better understanding of the molecular mechanisms driving obesity-induced TNBC progression could facilitate development of precision dietary intervention strategies. Here, we used murine models of obesity induced by different high-fat diets (HFDs) to examine their impact on TNBC progression.

View Article and Find Full Text PDF

Liver hepatocellular carcinoma (LIHC) is a prevalent and highly aggressive form of liver cancer, characterized by increasing rates of incidence and mortality globally. Although numerous treatment options currently exist, they frequently result in insufficient clinical outcomes for those diagnosed with LIHC. This highlights the urgent need to identify new biomarkers that can enhance prognostic evaluations and support the development of more effective therapeutic strategies for LIHC.

View Article and Find Full Text PDF

Metabolic reprogramming promotes cancer aggressiveness and an immune-suppressive tumor microenvironment. Loss of the Y chromosome (LOY) drives both phenotypes in bladder cancer (BC). We investigated the hypothesis that LOY leads to metabolic reprogramming using untargeted metabolomic profiling of human BC cells and analysis of pan-cancer transcriptomic datasets.

View Article and Find Full Text PDF

Purpose: Hepatocellular carcinoma (HCC) recurrence remains a significant burden on global healthcare. Hepatic ischemia-reperfusion injury (HIRI) is a common complication in liver surgery and may be a contributing factor to HCC recurrence. Nevertheless, the potential mechanism underlying HIRI-induced HCC recurrence has not been fully elucidated.

View Article and Find Full Text PDF