Small fish making a big difference: beloved star of environmental toxicology research in the current era.

J Zhejiang Univ Sci B

Department of Genetic and Metabolic Disease, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The zebrafish has emerged as a powerful model organism in life science owing to its remarkable biological characteristics and wide-ranging applications. This review provides a comprehensive overview of the recent advancements in research on zebrafish within the field of environmental toxicology, highlighting specific studies where this species was used to investigate various pollutants to elucidate their impacts and underlying mechanisms. The findings of these studies underscore the significant potential of zebrafish as a model to gain crucial insights into the ecological consequences of environmental contamination and toxicity pathways. By incorporating cutting-edge technologies such as artificial intelligence (AI), high-throughput screening, and omics approaches, the use of zebrafish as a model organism is poised to significantly accelerate toxicological investigations, promote environmental conservation efforts, contribute to safeguarding human health, and advance sustainable development objectives.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12303793PMC
http://dx.doi.org/10.1631/jzus.B2500166DOI Listing

Publication Analysis

Top Keywords

environmental toxicology
8
model organism
8
zebrafish model
8
small fish
4
fish making
4
making big
4
big difference
4
difference beloved
4
beloved star
4
environmental
4

Similar Publications

This study evaluated the chemical profile of toothpastes (TPs) and mouthrinses (MRs) and their effects on tooth enamel ultrastructure, and the viability of human dental pulp fibroblasts (hDPF). Four TPs and MRs containing different remineralizing agents (arginine, potassium nitrate, pro arginine, and stannous chloride) were analyzed for pH, titratable acidity (TA), and ion concentrations (Ca, K, Na). Enamel ultrastructure was evaluated using Fourier-transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

Tralopyril (TP), a representative bromopyrrolonitrile, functions as a broad-spectrum insecticide, raising growing concerns about its potential impact on aquatic organisms and human intestinal health. However, the key targets and toxicity mechanisms underlying TP-induced enteritis remain unclear. In this study, we utilized network toxicology combined with molecular docking to comprehensively explore the potential molecular mechanisms underlying TP-induced enteritis.

View Article and Find Full Text PDF

The diamide insecticide cyantraniliprole (CYA) and the triazole fungicide difenoconazole (DIF) are frequently co-detected in bee-related matrices. However, the interactive effects of these compounds on honey bee (Apis mellifera L.) physiology remain insufficiently elucidated.

View Article and Find Full Text PDF

Involvement of Ductal Reaction in Di-(2-ethylhexyl)-Phthalate-Caused Hepatic Fibrosis: Molecular Mechanisms and Potential Intervention Strategies.

Chem Biol Interact

September 2025

Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China. Electronic address:

Di-(2-ethylhexyl)-phthalate (DEHP) is a persistent environmental endocrine toxicant present in many products, and liver is the main target organ for DEHP metabolism. Long-term exposure to DEHP induces hepatic fibrosis, which is reversible in the early stages, while progresses to cirrhosis without timely intervention. Ductular reaction (DR) is a characteristic pathological change in hepatobiliary diseases, however, the involvement of DR in DEHP-caused hepatic fibrosis, the underlying molecular mechanisms, remail largely uninvestigated.

View Article and Find Full Text PDF

Wound healing has been extensively studied through the lens of inflammatory disorders and cancer, but limited attention has been given to hematophagy and arthropod-borne diseases. Hematophagous ectoparasites, including ticks, subvert the wound healing response to maintain prolonged attachment and facilitate blood-feeding. Here, we unveil a strategy by which extracellular vesicles (EVs) ensure blood-feeding and arthropod survival in three medically relevant tick species.

View Article and Find Full Text PDF