98%
921
2 minutes
20
Background: Eps15 homology domain (EHD) proteins, including EHD1 to EHD4, play vital roles in tumor progression. In this study, we aimed to investigate which specific EHD proteins, if any, are implicated in tumor immune evasion and immunotherapy response.
Methods: The immunotherapy responses of lung adenocarcinoma (LUAD) patients were predicted using tumor immune dysfunction and exclusion (TIDE) analysis. The T cell killing assay was performed by co-culturing activated T cells with LUAD cells. The function of EHD1 as a regulator of programmed death-ligand 1 (PD-L1) endocytic recycling was determined by receptor internalization assays. Methylated RNA immunoprecipitation (MeRIP) was performed to investigate N6-methyladenosine (mA) modification of EHD1 mRNA. The protein-protein interaction was revealed by the molecular docking analysis and validated by immunofluorescence (IF) and immunoprecipitation (IP) assays. RNA immunoprecipitation (RIP) was used to examine the interaction between YTH N6-methyladenosine RNA-binding protein 1 (YTHDF1) and EHD1 mRNA. The regulatory mechanism of YTHDF1 on EHD1 was investigated through the application of mA-binding site mutation analysis. The murine LUAD cells were employed to establish subcutaneous xenograft models within immunocompetent C57BL/6 mice to assess the immunomodulatory impact of EHD1 in vivo.
Results: TIDE algorithms and survival analysis identified that EHD1 promoted LUAD immune escape. EHD1 knockdown enhanced T cell cytotoxicity in killing LUAD cells across all effector-to-target (E/T) ratios. EHD1 overexpression exerted the opposite effect. The molecular docking analysis revealed an interaction between EHD1 and the PD-L1 protein, verified by IF and IP. Furthermore, EHD1 knockdown inhibited PD-L1 recycling, thereby promoting its lysosomal degradation. Disruption of the EHD1/PD-L1 interaction impaired the regulatory function of EHD1 in tumor immune evasion. In an immune-competent mouse model, we found that EHD1 silencing impeded tumor immune evasion and enhanced the efficacy of anti‑PD‑1 therapy. MeRIP-qPCR confirmed obvious mA modification of EHD1. Further, the EHD1 mRNA was found to bind to the YTHDF1 protein, an mA reader. YTHDF1 overexpression up-regulated EHD1 expression by enhancing its mRNA stability in an mA-dependent manner.
Conclusion: Our study illuminates the role of mA-modified EHD1 in tumor immune evasion and immunotherapy responses, thereby offering a novel avenue to potentially enhance immunotherapeutic sensitivity and improve the prognosis for patients with LUAD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cac2.70052 | DOI Listing |
Esophagus
September 2025
Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, Japan.
Background: The cluster of differentiation 47 (CD47)-signal regulatory protein alpha (SIRPα) axis is a key regulator of innate immune surveillance, facilitating the neoplastic evasion of macrophage-mediated phagocytosis. Although this pathway has been implicated in tumor immune escape in multiple malignancies, its clinical and prognostic significance in esophageal squamous cell carcinoma (ESCC) remain to be fully elucidated.
Methods: We retrospectively analyzed 100 patients who underwent esophagectomy for resectable ESCC.
EMBO J
September 2025
Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences; Wuhan University, Wuhan, 430071, China.
Inadequate antigen presentation by MHC-I in tumor microenvironment (TME) is a common immune escape mechanism. Here, we show that glycine decarboxylase (GLDC), a key enzyme in glycine metabolism, functions as an inhibitor of MHC-I expression in EGFR-activated tumor cells to induce immune escape by a mechanism independent of its enzymatic activity. Upon EGFR activation, GLDC is phosphorylated by SRC and subsequently translocated to the nucleus in human NSCLC cells.
View Article and Find Full Text PDFVirology
September 2025
Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany.
New SARS-CoV-2 variants continue to emerge and may cause new waves of COVID-19. Antibody evasion is a major driver of variant emergence but variants can also exhibit altered capacity to enter lung cells and to use ACE2 species orthologues for cell entry. Here, we assessed cell line tropism, usage of ACE2 orthologues and antibody evasion of variant MC.
View Article and Find Full Text PDFVet Microbiol
September 2025
Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou Unive
Bovine coronavirus (BCoV), a member of the Betacoronavirus genus, causes severe calf gastroenteritis and respiratory disease, resulting in a significant loss of livestock. Coronavirus non-structural protein 14 (nsp14) is involved in viral RNA replication and modification and subverts host immune regulatory pathways to facilitate immune evasion. In this study, we demonstrated that BCoV nsp14 mediates TNF receptor-associated factor 3 (TRAF3) degradation through the coordinated targeting of the ubiquitin-proteasome and autophagy-lysosomal pathways, thereby potentiating viral replication.
View Article and Find Full Text PDFVet Microbiol
September 2025
Engineering Research Center of Southwest Animal Disease Prevention and Control Technology for Ministry of Education of the People's Republic of China, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Key Laboratory of Animal Disease and Human Health
Duck plague is a highly contagious disease caused by duck plague virus (DPV) infection, leading to high morbidity (up to 100 %) and mortality rates (up to 95 %) among ducks. Mitochondria are essential organelles for virus replication. It is crucial to deepen the understanding of mitochondrial homeostasis and the interaction between mitochondrial proteins after viral infection.
View Article and Find Full Text PDF