98%
921
2 minutes
20
Halide superionic conductors have garnered considerable attention due to their high ionic conductivity, mechanical deformability, and excellent oxidative stability. However, their incompatibility with lithium metal results in a thermodynamically unstable interface that increases interfacial impedance, thereby limiting the performance of halide-based all-solid-state lithium-metal batteries (ASSLBs). In this study, we report the synthesis of a series of iodide-chloride solid electrolytes, LiZrClI (x = 0-3), designed to enhance the reduction stability of the electrolyte through the high polarizability of I. The substitution of I promotes covalent bonding with the central cation, thereby reducing its reduction tendency. The Li/LiZrClI/Li symmetric cell exhibits stable cycling for over 6000 h at 0.2 mA cm and withstands high critical current densities up to 6 mA cm. Full cells incorporating LiZrClI as the solid electrolyte exhibit enhanced cycling stability and capacity retention. Furthermore, the characterization by XPS and ToF-SIMS revealed the formation of an interfacial passivation layer composed of LiI and LiCl, which effectively stabilized the lithium-metal electrode and inhibited further electrolyte decomposition. These findings highlight the potential of iodide-substituted halide electrolytes in addressing interfacial challenges associated with lithium metal anodes, providing a promising pathway for the practical implementation of high-energy-density ASSLBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5c07580 | DOI Listing |
J Trace Elem Med Biol
September 2025
Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China. Electronic address:
Objective: We previously documented that exposure to a spectrum of elements is associated with autism spectrum disorder (ASD). However, there is a lack of mechanistic understanding as to how elemental mixtures contribute to the ASD development.
Materials And Methods: Serum and urinary concentrations of 26 elements and six biomarkers of ASD-relevant pathophysiologic pathways including serum HIPK 2, serum p53 protein, urine malondialdehyde (MDA), urine 8-OHdG, serum melatonin, and urine carnitine, were measured in 21 ASD cases and 21 age-matched healthy controls of children aged 6-12 years.
Small
September 2025
Key Laboratory of Electrochemical Power Sources of Hubei Province, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
Hybrid artificial layer based on inorganic/polymer composite endows superior toughness and mechanical strength, which can achieve high stability of lithium metal anode. However, the large particle size and uneven distribution of inorganic fillers hinder the uniform flow of lithium ions across the membrane, making it difficult to achieve smooth lithium metal deposition/stripping. In this work, a chemical lithiation-induced defluorination strategy is proposed to engineer poly(vinylidene difluoride) (PVDF)-based artificial layers, enabling in situ incorporation of highly dispersed LiF nanofiller within the polymer matrix and precise control over the LiF content.
View Article and Find Full Text PDFSmall
September 2025
School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China.
High-concentration electrolytes (HCEs) face inherent challenges such as high viscosity and diminished ionic conductivity caused by the formation of three-dimensional (3D) anion networks, which limit their practical applications. In this study, it is demonstrated that encapsulating HCEs within metal-organic frameworks (MOFs) effectively disrupts these 3-D networks, resulting in significantly enhanced ionic conductivity. Raman spectroscopy, nuclear magnetic resonance (NMR), and molecular dynamics (MD) simulations reveal a significant reduction in aggregates (AGGs)-state anion within MOF-confined electrolytes, confirming the reconstruction of the solvation environment.
View Article and Find Full Text PDFSmall
September 2025
School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, South Korea.
All-solid-state batteries (ASSBs), equipped with highly ion-conductive sulfide solid electrolytes and utilizing lithium plating/stripping as anode electrochemistry, suffer from 1) chemical vulnerability of the electrolytes with lithium and 2) physical growth of lithium to penetrate the electrolytes. By employing an ordered mesoporous graphitic carbon (OMGC) framework between a sulfide electrolyte layer and a copper current collector in ASSB, the concerns by are addressed 1) minimizing the chemically vulnerable interface (CVI) between electric conductor and solid electrolyte, and 2) allowing lithium ingrowth toward the porous structure via Coble creep, a diffusional deformation mechanism of lithium metal along the lithium-carbon interface. The void volume of the framework is fully filled with lithium metal, despite ionic pathways not being provided separately, even without additional lithiophiles, when an enough amount of lithium is allowed to be plated.
View Article and Find Full Text PDFNatl Sci Rev
September 2025
College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China.
The stress distribution in Li metal strongly affects the interfacial Li-ion diffusion, thereby influencing the morphology of plated Li and the performance of the battery. Here, we report a mechano-electrochemical coupling strategy that utilizes an arched structured carbon aerogel to achieve stable Li-plating/stripping electrochemistry. The arch-structured carbon aerogel can actively regulate stress distributions in response to the compressive stresses induced by Li deposition, generating the transition of stress from compressive on the convex surface to tensile on the concave surface, which can effectively promote the Li-migration kinetics and thus suppress the non-uniform deposition of Li.
View Article and Find Full Text PDF